OVER-CONVERGENCE ON THE CIRCLE OF CONVERGENCE
By Pavur Erpos anp Groree PIRANIAN

I. Introduction and summary. M. Riesz has proved (7] that +f lim,.... a, =
0 and the function f(z) = Y e-o a,2" is reqular at each point of the arc C(z = ¢'°,
ar £ a < ay), the series ) a,z" converges to f(2) uniformly on the are C. If the
sequence g, fails to converge to zero, the series Y, a,2" cannot possibly converge
at any point on the unit cirele; but it is still possible that a subsequence of
the partial sums s,(z) = 2 .i_o ;2" converges at some points on the unit ecircle.
In faect, Ostrowski’s gap theorem [5] and [4; 204-207] asserts that if the funclion
flz) = Z a.2" 18 reqular at all points of the arc C (including the end poinds) and
m; and n; are two sequences such that im inf,_. n,/m; > 1 and a, = 0 when
m; < n < n;, the partial sums s,..(2) converge to f(2) uniformly in some doemain
that conlains the are C.

If the requirement lim inf,_. n:/m; > 1 in Ostrowski’s theorem is relaxed,
convergence of the partial sums s,,,(2) to f(z) at points on the unit circle may
still oceur provided that the funetion f(z) or its Taylor coefficients satisfy
certain conditions [1], [6] -— the theorem by M. Riesz may be regarded as pro-
viding a special example. The present paper establishes certain general con-
ditions sufficient for uniform convergence of the sequence s,,,(z) to the function
f(z) on an arc € of the unit circle.

2. The general principle. Riesz’s proof of his theorem has been greatly
simplified by Landau [3; 73]: Let the function f(z) = Y, a.2" be regular on
the arc € of the unit circle; then there exists a circular segment I' (vertex at the
origin) containing the are C and its end points, and such that f(z) is regular
at all points of T and its boundary. The functions

ga(2) = [f(2) — 8,9} (z — 2)(z — 22)

(where z, and z, are the intersections of the unit eirele with the boundary of I),
are regular in T; each therefore takes its maximum modulus on the boundary
of T. Landau shows that the sequence g¢.(z) tends to zero uniformly on the
boundary of T, and it follows that the sequence f(z) — s.(z) tends to zero uni-
formly on the are C.

Landau’s proof in turn invites certain modifications. The general principle
stated below gives the results that can be obtained by these modifications.
The results become interesting when the modifications are made specifie.

PrincirLr. (i) Let T be a region such that the funciion f(z) = E a.z" and its
immediate analylic extension arve regular in the interior of T' and continuous on
T, and let the boundary of T meet the unit circle ai z, and z, .
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(i) Let the arc C of the unit circle (logether with its end points) be interior to
Tyand let L = min | (z — 2z,)(z — 2,) | (z on C).

(i) Let m; and n, be increasing sequences of integers (i = 0,1, 2, - -+ ;m, < n,)
such that a, = 0 when m; < n < n;. Then a sufficient condition that s,,(2) —
f(z) uniformly on C is the existence of a positive sequence p, such that the sequence
of functions

g:(2) = [f(2) — s, (D] [z ~ 21)(z — 2:)/LI"'a™ ™07
tends to zero uniformly on the boundary of T

The principle is virtually obvious: each function g,(z) is regular in T'; the
principle of the maximum therefore applies; and since on C

f@) — sa(@ ! = g || ¢ — 20 — 2) [/L]™

and the quantity in brackets is not less than unity, the proof is complete.

3. Application to Taylor series with bounded coefficients. It seems reasonable
to expect that sufficient conditions for over-convergence will generally involve
the size of the Taylor coefficients and the lengths and positions of the gaps.
Remarkably enough, the following theorem assures over-convergence at an
astonishingly rapid rate which is independent of the position of the gaps.

TaEOREM 1. If
Wla.|<A4mr=012---);
(ii) a, = Qwhenm; < n < n, lim,.. (n, — m,) = =);
(iii) the function f(z) = D a,2" is regular on the arc C of the unit circle (including
the end poinis);
then the sequence s,.;(z) converges to f(z) uniformly on C; moreover, if k is any
constant less than unity, there exists an indeger io such that on C

‘If(z) i Smi(z)E < (nf o m._)—"ﬂ-—m‘J"
when 1 > 1, . '

To prove that the sequence s, (2) converges to f(z) uniformly on C, it would
be sufficient to apply the general principle with the region T' chosen as for
Landau’s proof of Riesz’s theorem, and with p, = 2 (2 = 0, 1, 2, ---). The
proof of the complete theorem is carried out with the same region T, but it ealls
for a more delicate choice of the sequence p; .

For simplicity, the following notation is used:

(n; +m,)/2 = N,,
(ny —m)/2=M,=N, —m; =n;, —N,.

A constant & is chosen so that & < h < 1, and the sequence p; is defined by
the relation

pi = M:+ 1.
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It is to be shown that on the boundary of I' the relation
| @) — 8.2z — 2)(z — 2z) /LY | < (2M,) "

holds uniformly provided the index ¢ is sufficiently large.

The proof is carried out in three parts: for the segmentz = rz, (0 < r < 1);
for the segment z = rz, (I < 7 < R); and for the arc |z| = R. Symmetry
permits the suppression of all discussion regarding the segment z =
rz; (0 < r < R).

On the first part the relation

7@ — @ | < 3 la. |7 < 4™/ — )

gives the estimate
lg:(2) | < :ch";~‘“"[(_1 o ?‘)C/L]M"" ,

where ¢ denotes the diameter of the region T. Since

vty () weren

suppression of the subseript 7 gives the inequalities

M )”( Me/L )-“‘
M+ M) \M 4+

< LicL—l(l + 1/11:{I"l —My=hAfh (Ml—hL/c)—M‘
< AcL'@eM*"Lje) ",

| 9z) | < AcL_l(

and therefore
g | < BM'™SH™,

where K is a certain positive constant; this implies that if M, is sufficiently
large,
log | g(z) | < —M"{log K 4+ (1 — h) log M)

< —(2M)* log (2M),

as was to be shown,
On the segment z = rz, (1 < r < R),

mi—1

|9 | < [F + REG | an | r":l[(r — /L]

where # = max |f(2) | (z on I'). This inequality implies that (subscripts sup-
pressed)
¥

m—
T —

001 <[ F+ 4T L i - oapesrs
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and, for sufficiently large values of 7,
lg(e) < 24eL™ M[(r — 1e/LI™".

maxs” (1 = (s = z)-ﬁ(s-i t)’-

M )**“( Me/L )“‘
M — M M - M*

Because

| 9@ | < 2AcL"(

= 24cL7Y(1 — M)y TG — DLf]™™
< (KMI—J‘)—M* < (2M‘)-(2M(I"

provided M, is sufficiently large.
Onthearc|z| = R,

mi—1

|g‘_(z) | < [F + A Z Rn](c/L)H-M;hR-N"

n=0

24 -Mq 14 M
< g R/T)

= [(1 — 9R]™™

r> 1),

{im;.. € = 0). A simple comparison shows that the last member is less than

(2M_)—(BMH"

when M, is sufficiently large, and the proof is complete.

4. Functions of finite order. A function f(z) = D a.2" is said to be of finite

order on the unit eircle provided

lim sup log | a. |/logn <=

[2; 171]. For functions of this type, two closely related theorems will be proved

simultaneously.

TeeoreM 2. If a, is a sequence such that

(i) there exists a constant t such that | a,| < 2'(n =0,1,2, ---);

(il) there exist two sequences of integers m, , n; such that im;_... (n, — m,)/log

n; = o gnd such that a, = 0 when m; < n < n; ;

(iii) the function f(z) = . a,2" is regular on the arc C of the unit circle (in-

cluding its end poinis);
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then the sequence s,..(z) converges to f(z) uniformly on C; moreover, if k is any con-
stant, there exists an inleger i, such that on C

]f(z) =2 8.“(2) l < n:k

TrEOREM 3. Let T be any region and C an arc on the unit circle interior (fo-
gether with its end points) to T. Corresponding lo every constant t there exists a
second constant k(t, C, T) such that for every function f(z) = 2. a.2* which is
regular in the interior of T and conitnuous on T, the sequence S..(2) converges
to f(2) uniformly on C provided

@) la.l<n'(n=012 ),

(i) a, = Owhenm; < n < n, (1 =0,1,2 ---), where n, 1s a sequence suck

that
lim inf (n;, — m.)/log n; > k(t, C, T).

The following version of the proof, wasteful in its treatment of inequalities,
is presented because of its simplicity. Without loss in generality it may be
assumed that the region T in Theorem 3 is a sector of an annulus; z = re';
Ry <r<R,R <1<Ry;eq £a< a. Thesymbolsc¢, M;, N,, and
F are used with the same meaning as in the previous section; the symbol 8,
denotes the quantity M./log n; . The sequence p; is defined by the relation

pi = ¢+ 1+ log n;

Part1. On the segment z = rz, (B, <r < 1)

| 0:6) | < 3 'l — re/L1s

n=n{

< no™ i " [(1 — 7)e/L]°* ~[(1 — r)e/L)*"

< Cy[r" @ = re'e/L)= ™,
where C, is a constant depending on ¢, L, and ¢.

Part 2. On the segment z = 72, (1 < r < R,)

mi—1

F+ ), o7

[0 — De/LPr™

lg:e) | <

< 2m.:_+1r—u.‘[(?_ o l)c/LJIDR M[(T _— I)G/L]H-l

< Cg[‘f'-si(?' e 1)el+lc/L]log L )




652 ERDOS AND PIRANIAN

Part 3. On the arc z = Ree™ (o < o < ay)

mi—1

| g!'(z) | < [F + E n‘R;:,(gf’L)mR?—N.-

nw=il

< mf;“[R;a‘c?/L}m us(c'.’/L)J +1

< CS(R;!J;&:+ICZXL)IU‘ i
Part4. On the arc 2 = R’ (ay < a < a,)

| g:2) | < D2 n'RYE/LY 'Ry

nERG

< nRY 3 n'RICS/LY

=0

< C.,[Rf‘e'c’/L]l" ni .

In Part 1, the quantity | g:(z) | is dominated by C,[(1 — Ry)e‘¢/L]"*™, in
Part 2 by C,[(R. — 1)e**'¢/L]'* ™. 1If the contents of the two pairs of brackets
are not less than unity, they may be made so by replacing the radii R, and
R, by radii R} and R} nearer to unity. The quantities dominating | ¢;(2) | in
Parts 3 and 4 are then replaced by Cs[RS "e'™'¢*/L]"* ™, C. R e'?/L]"* .
The contents of the last two pairs of brackets are less than unity and bounded
away from unity provided that

log R limsup 6; > t + 1 + log¢’/L,

i

—log R{ lim sup 6; > ¢t + log ¢*/L.
Theorem 3 now follows at once. The conclusion of Theorem 2 follows, for any
fixed constant k, if R{ and R} are chosen so that

R >1—e¢""Lfe
R <14 ¢ " 'Lfe.

Since nothing hinders this choice, the proof is complete.

The preceding proof of Theorem 3 passes from inequality to inequality with
utter disregard of economy, and it finally accomplishes its purpose by heaping
most of its burden on the quantity lim sup...f; . In other words, the quantity
k(i, C, T) is made unnecessarily large. Whereas a proof constructed to obtain
the best possible value for k(z, €, T) would be so loaded with parameters that
all its salient features would be obliterated, it is of interest to mention some
of the possible refinements:

The diameter ¢ of the region T may be replaced by quantities¢; (§ = 1, 2, 3, 4)
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where ¢, and ¢, represent the maxima of | z — z, | on Parts 1 and 2 of the boundary
of T, respectively, and ¢; and ¢; represent the maxima of | (z — z,)(z — 2,) |
on Parts 3 and 4, respectively.

The factors ** and #~** in the majorants for | ¢.(2) | on Parts 1 and 2 of the
boundary of I' need not be discarded; they can perform useful work, as in the
proof of Theorem 1. This approach makes it unnecessary to choose R{ and R}
near to unity. Further freedom (of value when R, can be chosen quite large)
is then obtained if the sequence p; = ¢ + 1 + log n, is replaced by the sequence
p; =t+ 1+ slogn,, where s is a convenient constant between zero and unity.

5. Two general theorems. In the application of the general method of this
paper an essential step consists of estimating the quantity |f(z) — s.,(2) |
by means of the Taylor series .., | a,| #". The previous two sections deal
with cases in which the sequence | a, | is dominated by the special sequence n*;
the present section deals with a more general dominating sequence.

If a sequence ¢, has the property | a.| < e*™ (n = 0, 1, 2, ---), where the
function ¢(z) is continuous and has a right-hand derivative ¢'(z) tending to
zero monotonically as x — o, it follows at once (since log | a, | < o(n)/n)
that lim sup,-. | @, ['" < 1. If on the other hand the sequence a, has the prop-
erty lim sup,.. |a, |'" < 1, it is graphically obvious that there exists a con-
tinuous function ¢(z) with a right-hand derivative tending monoctonically to
zero as * — o and such that log |a, | < ¢(n) (» =0, 1, 2, ---); in fact, in any
case in which the inequality | ¢,, | < lim sup,.. | @, | holds for all non-negative
integers m, there exists a least function ¢(x) with these properties. The con-
cave sequences ¢(n) dominating the sequences log | a, | will be used in esti-
mating the quantities | f(z) — s,.(2) |

THEOREM 4. If
(i) the function f(z) = 3 a.2" is regular on the arc C of the unit circle (in-
cluding its end poinls);
(i) () is.a function such thai ¢'(x) \ 0 asx — © and such that | a, | < ™’
(n=0,1,2, -++);
(iil) N; and 6; are sequences such that

..oV log 8,
lir;ll:l*e:n_f log I\'r.'

limﬂ, e Wy

a, = Owhen |n — N, | < 6:0(N:);

then the sequence sy, () converges to f(z) uniformly on the arc C.

I

The proof follows the pattern that produced Theorem 1. The same region
is used; but the consideration of the function

g;(?‘.«) = U{Z) - Smi(z)][(z o 31)(2 S 22);(L]pc_-\".}z_ﬁ_-‘_




654 ERDOS AND PIRANIAN

on the segment from the origin to the point z; is carried out separately for the
two segments 0 < |z| €1 — 2o(N)/N;,1 — 2(N,)/N. < |z| € 1. The
symbols F and ¢ shall have the same meaning as in §2. The symbols m; and
n.; represent the quantities N; — 8.0(N.), N, + 0,0(N)).

Part1. When 2 = 72, (0 < » < 1 — 2¢(N,)/N,),

| &) — s (@) | < 2 1r"e”™

=

=
(nil) n_ong'(ni)
< et S e
n=0

< '.“‘MGM"”K[I e reea’(N.-)]‘
Since (1 — 22)e" < 1 — = (x > 0) and ¢'(N,) <. o(N,)/N, (the assumption
that ¢(0) > 0 entails no loss in generality), the following relations exist:
| f@) — smi(@) | <16 O[1 — (1 — 26(N)/NJe” ¥ 7™]

< e ON (N,

| gi(Z) ! < ‘gév}vfi) ru.‘-!\'ie\o(ui}[(l - T)G/L]p(.’lnj

< N — »)(A + €ee/L)*

(the assumption that e* ™" = [(1 + €e]*™") is justified if lim sup n,/N,; < =;
if this relation does not hold, the gaps ean be divided into two classes so that
the relation holds for one of the classes and Ostrowski’s theorem fills the breach
for the other class).

Since

il

i ( 6; fi+1 1
i L G
om'a“:{r{i r (1 ’) 9; + 1) 6,’ 1/(39t')}

| 9:@) | < Nu(k8,) *"" = exp {log N; — @(N;) log ké6;},

where k is an appropriate constant. The hypotheses on o(N.) log 8,/log N,
and on 6, imply that g.(z) — 0 uniformly on Part 1.
Part2. Whenz = rz, (1 — 20(N,)/N; €< r < 1),

mi=1
| 1) — $ai@) | < F Z ™ < N,-GNN“’

and (subseripts suppressed)
lg(2) | < Ne* "1 — r)e/L)F™
< Ne*™P[1 — 2o(N)/NI " [2e(N)e/(NL)]*™
= N{[1 — 2o(N)/N]¥* ™ (2ec/L)p(N)/N}**"
= N1 + Jho(¥)/NI"™,
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where k& = 2¢%/L and € — 0 as ¢ — «, With the notation ¢(N,) = ¢, N, =
e'****, the last member becomes

exp {s; + t; — e"'[t, — log (1 + €k},

and since lim s, = lim #; = , this tends to zero as ¢ — =.
Part3. Whenz =7z, (1 < r» < R)

| 5@) = sm@ | <F + 31767 < Nie®™p™,

n=0

| @) | < Nee® ™07 (r — 1)e/L]""
< N0 — DEPYY,

where k = ee/L. Since

841
9 E1) gl

maxr % — 1) = ( 7,

1<r

the conclusion is again obvious.
Part 4. When |z | = R,

| 9u(2) | < NLJ[R™"ee’/L)" ",

and the proof of Theorem 4 is complete.

It should be pointed out that the condition lim §; = « in Theorem 4 is
strictly analogous to the condition lim (n; — m;)/log n; = « in Theorem 2.
In both theorems it is required that the length of the gap beginning at » = m,
be large compared with ¢(m;), where the sequence ¢(n) is a concave majorant
of the sequence log | @,|. If in Theorem 1 the constant majorant A of the
bounded sequence | a, | is taken greater than unity (so that its logarithm is
positive), Theorem 1 immediately falls into one pattern with Theorems 2 and 4.

Now Theorem 4 is of interest only in those cases in which lim sup log
| @, |/log » > 0 (all other cases are covered better by Theorems 1 and 2).
There remains the case of functions whose Taylor coefficients a, are unbounded
but are ultimately less than #* in absolute value, where « is an arbitrarily
small positive constant. This case is covered by Theorem 2, but in a way that
requires the lengths of the gaps to be very much greater than the least possible
concave majorant of the sequence log | a,|. Theorem 5 abolishes this state
of discrimination; more generally, it improves the status of all Taylor series
of finite order with unbounded coefficients; it includes Theorem 2.

TaEOREM 5. If
(i) the function f(z) = > a.z" is regular on the arc C' of the unit circle (end
points included);
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(i) ¢(x) 25 a function such that
p(@) = ©, '@ N0 (z — =),

lim sup...¢(z)/log v < <,

la. | < e®™ m=0,1, ---);

(iii) N, and 8; are sequences such that
liIn B" = o,
a, = 0when |n — N,;| < 8,0(N,);

then the sequence sy, (2) converges to f(z) uniformly on the are C; moreover, if €
8 any posilive constant, there exists an integer i, such that |f(z) — sv.(2)| <
Y when i > 1, .

The proof is earried out with the same region I' (and with the same notation)
as the proof of Theorem 4. The exponent p; has the value ¢(N,;) + ¢, where
¢ is any constant greater than 1 4+ max ¢(n)/logn (n = 2,3, --+). Itis to
be shown that the function

9:@) = /@ — sm@lz — 2)(z — 2)/L) "0 %2

tends to zero uniformly (and with a certain rapidity) on the boundary of T,
as i — .

Whenz =1z, (0 <r <1),

1 £6) — 8.,0) | < 30 17"

n=ny

< Z phitne® (ni)+¢(n)

n=0

<r-we¢(m!(| a0 I =E la‘. I 4 E?rnnq—l)

< O™ + 2?00 — »N,
[ g:@) | < [Cr’ (1 — P)]"W9.

Since the maximum value of r**(1 — ) on the interval 0 < r < 1 tends to
zero as 0, becomes large, the required result follows for the segment from the
origin to the point z, .

Whenz =7z, (1 < r < R),
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mi—1

| f@) — s.2) | < F + E R

n=0

mi—1

& F+ep{ms) z "

n=0
< 2° ™ (r — 1),

| 9:2) | < 1Car™"(r — D]°,

and again the required result follows immediately.
Finally, on the arc | z| = R,

19:@) | < [CLRT]7Y,

and the proof is complete.

6. A theorem on double gaps. A Taylor series 3, a,z" shall be said to have
double gaps with partitions of thickness k if there exist infinite sequences m; , n, ,
n; with the property that

lim (n; — m,) = lim (0} — n,) ==,

i—m (=
va, = Qwhenm; <n<nmon+k<n<al,
a, # 0 for at least one of the valuesn = n, + j (=12 - k).

THEOREM 6. If
(i) the Taylor series ), a,z" has double gaps with partitions of thickness k;
(ii) the coefficients a, are bounded;
(iii) one of the k sequences a,,.; (j = 1, 2, -+~ , k) fails to converge to zero as
17— @]
then the funetion f(z) = 3 a.2" cannot be extended analytically beyond the unit
circle.

It follows from Theorem 1 that if the function f(z) is regular on any arc ¢
of the unit circle, the sequences s,;(z) and s,,,,(z) must converge to f(z) uni-
formly on the are C. Now

E
8ni+k(z) ZE su.‘(z) = Zn; Z anu-:'z,s
=1

and

= A, | 3 @i/ A

i=1

13
E Ay v izi

=1
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where A, = max |@,,.;| (j = 1,2, --- , k). Since the polynomial in the last
member has at least one coefficient of modulus unity, its maximum modulus
on the are € is bounded away from zero; and since lim sup 4, > 0, the over-
convergence guaranteed by Theorem 1 cannot take place. Therefore the unit
circle has no arcs of regularity for the function f(z), and the theorem is proved.

It is clear that Theorems 2, 4 and 5 induce theorems analogous to Theorem
6. Moreover, it is easily seen that condition (iii) in Theorem 6 ean be weakened:
it is not necessary that the sequence a,, + j does not tend to zero, merely that,
for some constant & less than unity and for infinitelv many values of the integer
1, the two inequalities

ni=miyk

Jan‘+j|>(n.-—m‘)' :

!a'n.' +J~I > (ﬂ-: s ﬂ()—(n’i——ni)"’

are satisfied.

REFERENCES

I. R. P. Boas, Ir., Some gap theorems for power series, thiz Journal, vol. $(1938), pp. 176-
188,

2. J. Hapamarp, Essai sur Uéiude des fonctions, downées par lewr développement de Taylor,
Journal de Mathématiques pures et appliquées, (4), vol. 8(1852), pp. 101-186.

3. E. Lanpavu, Darstellung und Begriindung einiger neverer Ergebnisse der Funktionentheorie,
Berlin, 1929.

1. P. MontEL, Legons sur les familles normales des fonctions analytiques ¢t lewr applications,
Paris, 1927,

5. A. Ostiowskl, Uber ecine Eigenschaft gewisser Potenzrethen mil unendlichvielen ver-
schwindenden Koeffizienien, Sitzungsberichte der Kgl. Preussischen Akademie der Wis-
senschaften zu Berlin, vol. 34(1921), pp. 557-565.

. G. PmaniaN, On the convergence of certain partial sums of a Taylor series with gaps, Bulletin
of the American Mathematical Society, vol. 49(1943), pp. 881-885.

7. M. Rigsz, Uber einen Salz des Herrn, Fatou, Journal fiir dic reine und angewandte Mathe-
matik, vol. 140(1911}, pp. R9-99.

Syracuse UNIVERSITY AND
UNIVERSITY OF MICHIGAN.



