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1. Let X:, X5, ---, X, +-+ be independent random variables and let 5. =
¥ omaX,. In the so-called law of the iterated logarithm, completely solved
by Feller recently, the upper limit of S, as n — o ig considered and its true
order of magnitude is found with probability one. A counterpart to that
problem i3 to consider the lower limit of S, as # — = and to make a statement
about its order of magnitude with probahbility one.

Tureorem 1. Let Xy, ---, X, , +++ be independent random variables 1with the
commen distribution: PriX, = ) =p,Pr(X, =0 =1—p=¢q. Letgn) | =
and

s 1
G Ex e
Then we have
(1.2) Pr (lim n'?g(n) | 8. — np| =0) = 1.

™=

Theorem 1 is a best possible theorem. In fact we ghall prove the following
TeeoreMm 2. Lel X, be as in Theorem 1 but let p be a quadratic irrational.
Letgin) T = and

- 1
1.3 S et .
(1.3) ?__:1 i S
Then we have
(1.4) Pr (im »n"* g(n) [ 8y — np | = 0) = 0.
=t

By making use of results on uniform distribution med 1 we ean prove (1.4)
for almost all p, however the proof is omitted here.

In order to extend the theorem to more general sequences of random variables,
we need s theorem about the limiting distribution of S, with an estimate of
the accuracy of approximation. Cramér's asymptotic expansion is suitable for
this purpose. The conditions on F{z) in the following Theorem 3 are those
under which the desired expansion holds.

Taeponem 3. Lel Xy, ---, Xu, --- be tndependent random variables Having
the same distribufion function Flx). Suppose that the abselulely continuous parl
of Flz) does not vanish {dentically and that ils first momend 15 zero, the second 18
one, and the absolute fifth 48 finite.  Let $ln) be as dn Theorem 1, then

(1.5) Pr (im #'"ymn) |8, | =) = 1,

=0
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1004 CHUNG AND ERDOS

On the other hand, let d(n) be as in Theorem 2; then
(1.6) Pr (lim 5" g(n) | S. | = 0) = 0.

It seems clear that the result ean be extended to other cases, however we
shall at present content ourselves with this statement.

2. For = > 0let I(x) denote the integer nearest to z if ¢ ia not equal to []
+ #;in the latter case, let I{x) = [z} let |z] = 2 — I{z). We have then for
any & = 0, y > 0, the mequality

[z =yl | = | {2} — (v} |

We are now going to state and prove some lemmas. The first two lemmas
are number-theoretic in nature; the third one supplies the main probability
argument ; and the fourth one is a form of gero-or-one law.

Lusmma 1. Lef p > 0 be a real number. Lot in) T =. Arrange all the
positive tniegers i for which we have,

(2.1) | [np} | < en™g(n)™

in an tnereasing sequence ng, 1 = 1, 2, « -« Then for any pair of posilive tnfegers
£ and L we have

Mijst = T+ k.
Proor. Buppose the contrary:
i < % 4 ne
Case (1): & = 1. Consider the 2t + 1 numbers
iy Mg, =* %, Mipae
and the corresponding
(2.2) {np], (niapl, <+, (Neap].
There are at leagt & 4 1 numbers among (2.2) which are of the same sign:
without loss of generality we may assume that they are non-negative. Let the
corresponding n; be
M, = W R e
Then we have
0 = [ng pl <eng"gm) " S g em)™,  j=1,-,k+1;
sincei; = ¢ = k;and
| {fiaea @ — ngyp) | <end™ ™, G= 100k

0 <y — M S Bame — W <M,




== |
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Thus there would be & different positive integers ng,, — 0y, f = 1, --+, k
all < ng, for which
[ np} | < enz3p(n) ",

This is a contradietion to the definition of n .
Casg (i) & > 4. Consider the ¥ + & -+ 1 numbers

Ny, Meat, %, Tilok
and the corresponding
(gl {naap), - ooy {nigapl.

Sincet + k + 1 > 2 4 1, there are at least ¢ + 1 of the numbers above which
are of the same sign, say non-negative. Let the corresponding n; be

Thjgy o= Ty 0t K gy -

By an argument similar to that in Case (i) we should have ¢ numbers
Mhey = Mg = 1, <+, 4, all < i for which

| tnp) | < en?"™pind ™ |

This leads to & contradietion as before.
Lemma 2. Let ny be defined as in Lemma 1. Then if

| — 1

9 X~
we have
{2.“!‘} Z ﬂ?”i = o
faal
Proor. Consider the points
hen A g(n) ™! ho= 1, , =27 w4 @),
They divide the interval (—%, 1) into at most [¢7'n'"¢{(n)] + 2 parts. Hence
at least one subinterval contains
I . T

[e7nt3g(n)] + 2

members of then numbers |mpl,m = 1,2, -+-, n. Let the corresponding n; be
L TEEC - PEE o L . T

Then

0< | fnp — nip) | < en”Pn) ™ < elng — na)” ”’q}(ﬂ; —
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Hence if gin) denote the number of numbers among 1, - - -, n for which
| tnp) | < en"g(n)™,

we have, for n sufficiently large
aln) > 2 enN(n) .

Now

o B(2%) — g(2)
:#-'12;; =k s = \«"Jf{ ;

i“ I f: g(25) — g(2=1)

k=] 3=l po cab km l '\fZT
gl) & 1 1
- -5+ Lo (75 - 75m)
gll) K SevE(L 1 1
z -+ ivs (Ve - v)

Thus (2.4) is proved.
Lemma 3. Leltmg, @ = 1, 2, -+ be a monotone incregsing sequence such that
Sfor any pair of positive inlegers ¢ and k we have

(2.5) Nisae = N+ M

and

{2.‘5} Z: ﬂ.?”’ = ool
w1

Then if o and 8 are two infegers, we have for any tnteger k > 0,
(2.7) Pr(S., = I{pn: + pe) + B alleast once fori = h) = %.

‘Hee e g Theory and Application of Infinite Beries, London-Glasgow, Blackis and
Hon, 1828, p. 120,
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Proor. Denoting the joint probability of Ey, By, <+ by Pr(E,; Ey; ---)
we have
Pr(8., = Ilpn, + pa) + 8) = Pr(S,, = Ilpn. + pa) + 8;
Sui—ny = Ilpn; + pa) — Ipma + pa))
+ Pr(8., # I{pm +pa) + 8; 804 = Ipmi + pa) + 5;

Buimss = I(pn: + pa) — Ipnass + pa))
+ an

-+ Pr(8,, = Ilpny + pa) + 8; <+ ; 8agey # Ipnia + pa) + 8;
8, = Hpri + pa) + 8.
Writing
p; = Pr(S., = I(pn; + pa) + 8),
w, = Pr(8., #= I{pn; + pa) + 8 for h =j < k; 8, = Ilpn + pa) + §),
Pri =Pr(8nn = Ipn; + pa) — Ipny + pa)), e = 1;
and using the assumption of independence, we have

i
b= 3w
Bumming {rom h to m we get
i . i i i
(2.8) §m=§§wkm.i§§wt§m.;.

Now for any positive z and y, I(z) — I{y) = I(z —y) or I{zx — y) == 1; and
it is well-known that for the random variables we have, given any ¢ > 0, if
n > mle), and § = £1,

Pr(8. = I{np) + &) = (1 4 €Pr(S. = I(np))
hence we have, if 1 — k = my(e),

(2-9:] PEa = [1 = E‘.'I‘HPI'{.SN..N . I(Im'lf = ?ﬂ!n
From (2.5) if 7 > [, we have
(2.10) Ny = Ne A+ g -

Also it is well-known that asi — =,

1
(2:11) ny o~ V@: :
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Henee from (2.9), (2.10) and (2.11) we haveif ¢ — & = misle) where ma i5 & posi-
tive constant,

P 5 (1 + EKE}PT{SRH‘_*”':] — I{pﬂ'"l—l‘].’?])}-

Since a and @ are fixed, to any € > 0 there exists an integer my = mole) > my
such that if § — &k = mole),

(2.12) PriSu - = Hpmiu-nm)) = (1 + @prasonm-
Thus for ¢ — k = male),

Pt = (1 + Qpru-sm.
Using (2.12) in (2.9), we obtain

Hi EFmp=L T
E PiE 2w ( 2. D0 +@ _ b Pm—mm)
it Bl fomfl Ty
ln [ﬂiy
= (mu r2A 49T p)
Therefore
zm L i Einh ™

S A+ S
Since by (2.11) and (2.6) the series 2o 94 i8 divergent, we geb, lettingn — =,

Z VIEEE + A
Since e is arbitrary and the left-hand side does not depend on e this proves (2.7).
Lesma 4. If for any tntegers o, 8 and k> 0, there exists o number 9 > O not
depending on «, 8 and an inleger [ = Ik, n) such that, n; being any sequence T =,
(2.13) Pr(8,, = I{pn;+ pa) + Batleasioncefork =1 1) = n;
then
(2.14) Pr(8., = I{pn: + pa) + Binfinitely often) = 1.

Proor. Take a sequence k, k, --- and the corresponding Iy, &, - - - such
that ;

Bh < b < ke < b < ---
Consider the event
E:: 8. = I{pn; + pa) + B at least once for &, =7 = L,

and let the probability that E, ocours under the hypothesiz that none of E;,
-, E._; oceurs, be denoted by Pr(E, | Ei -+« H,_y). Then the latter is a prob-
ability mean of the eonditional probabilities of E; under the various hypotheses:

H: Say = ayy b =4 = s lstsr—1;
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where the ¢,,'s are such that for all i, on, # [{pn; + pa} 4 B but are otherwise
arbitrary. Now under H, E, will oveur if the following event I' oceurs:

F: Spjmy,., = Hpni + pa) + 8 — ony,_, at least oncefor k, = ¢ = L.

Henee
Pr(E, | B -+« B—y) = min Pr(E, | H) = Pr(F | H) = Pr(F).
L

Writing the equality in F as
Suiappey = Hplne = ny) + plns,., + ) + 8 — ony_,
= I{p(n:— ni,_)) + pa’) + 8
and consider the random variables X, . , Xu , 42, -~ as X}, Xz, -+ we
gee from (2.13) that
Po(E, | B - i) = PuF) 2 1.
Therefore the probability that none of the events E, , r = 1, -+, 5 ocours is

Pr(E} -+ E)) = Pr(E))Pr(E;|E) -+ Pr(E,[Bf -+« Eiy) S (1 — o).
Hence

Pr(S,, #= Ipn: + pa) + glorall, =i Sk, ,r=1,2,-+) =0

Sinee I; can be taken arbitranly large, (2.14) is proved.

Remank. Lemma 3 and 4 imply an interesting improvement of the well-
known fact that Pr(S. — np = infinitely often) = 1 for a rational p. Letn; be
any monotone inereasing sequence such that (2.6) holds; in addition if for a
ce-tain integer m' > 0 and any pair of integers ¢ and & we have

(2.15) Ripmk = M -+ 7
then
Pr(S., — nip = 0 for infinitely many i) = 1.
That the condition (2.6) alene is not sufficient ean be shown by a counter-
example. On the other hand, it is trivial that (2.6} is & necessary condition,
The condition (2.15) can be replaced e.g. by the following condition:
e — ne 2 And?, A > 0.

The proof iz different and will be omitted here.

Proor or TaEorem 1. Let the sequence n; be defined asin Lemma 1. Then
by Lemma 1 and 2 this sequence satisfies the conditions (2.5) and (2.6} in
Lemma 3. Henee by Lemma 3 the condition (2.13) in Lemma 4 is satisfied
with any 7 < 3. Thus byLemma 4 we have (2.14), Takinga = § = 0 therein
we olrtain

PI'(.SH‘ = == Lﬂ'ij'.l|: ].I.'IﬂllitElj" ﬂft-en} = 1.
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Henee by the definition (2.2)
Pr(| 8« — np| < en "Yn)™ infinitely often) = 1.

Since ¢ is arbitrarily small (1.2) is proved.

Remarx. If is clear that (2.14) yields more than Theorem | since & anu g8
are arbitrary. It is easily seen that we may even make « and g vary with ny
in a certain way, but we shall omit these considerations here,

Proor o TreoreEsm 2. Arrange all the positive integers n for which we have

| {np} | = AnVe(n)™, . A4 >0,
in an ascending sequence ng, i = 1,2, ---. Sinee

| tnpl | = An7"o(n)™
we have
{2.16) [ tnizip — nip] | = 24n7(n) 7"

On the other hand, since p is a quadratic irrational, it is walI-l-:nawn that there
exists & number M > 0 such that

il §
(2.17) | Insip — mpl | > R
From (2.16) and (2.17) we get with 4, = M/24,
{2.18) nigr — me > Ami )

Without loss of generality we may assume that é(n;) = ni®  For we may
replace ai(n) by du(n) defined as follows:

¢n) i ¢(n) = n'"

13

1 it ¢ln) = a"?
After this replacement (1.3) remains convergent, while if (1.4) holds for ¢(n),
it holds & fortiori for ¢(n).
Now if ¢(n:) = ni”, and the constant Ay is such that 24, + A < 4,, we
have from (2.18)

i) =

114

npm > ngt + Asind.
Hence by iterating,

Ry Sy E:.ﬁ[nh} = A E= @) > Ass ¢-([ :D
Therefore by (1.3)

(2.19) E et o,

fer]

"Bee 0. g Hanoy ano Waianr, Introduction to the Theory of Numbers, Oxford 1538, p.
157.
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Define
pi = Pr(Ss, = I{pn).
Asin (2.11) we have
1
o i
Hence from (2.18)

i < w.
teml
By the classical Borel-Cantelli lemma it follows that
Pr(8,, = I{pn) infinitely often) = 0.
By the definition of n; this i3 equivalent to (1.4).
3. Lomma 5. Let Xy, ---, Xuy - be independent random variables hating

the same distribution funciion F(z) which satisfies the condilions in Theorem 3.
Then if & < mand & = ofl), 7 = oll) as n — =, we have

(3.1) Prim = 08, £ 2) = (20 xs — 2) + ofm — ) + O™

Proor. By Cramér's asymptotic expansion® we have, if we denote the r*®
moment of Fx) by o, ,

3“2 ~zifg
+'547='|: z‘+3x}s ‘i",?zv,-—

where

(—2® + 102* — 162)¢ ™" + R(x)

[R(z)| = @™,

and @) is a constant depending only on Fiz),
It follows, using elementary estimates, that

Prm = % =m)= v% ’:"r’"”’ dy
o250 ) o )

Bince z: = o(1), 72 = of1) this reduces immediately to (3.1).

! Cramer, Handom Variebles and Probability Distributions, Cambridge 1937, Ch. 7.
For a simplified proof see P. L. Hau, The dpprozimate Distribution of the Mean and Var-
iance of a Sample of Independent Variables, Ann, Math, Statisties, 16 (1043), pp. 1-29,
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Lumma 6. Let g, be any rveal number such that 2, = 0(n'®), ¢ any positive
number, and h any positive infeger, Let f(n) T o= and

o - ﬂi«lir'n} -
Then if the random variables X, satisfy the conditions of Theorem 3, we have
(3.3) Pri | 8. — 2. | = en “*¢(n)~" at least once forn = k) =
Proor. Write
Py=Pr(8 —a| = e pm)™);
Wi=Pr (S —z| >y ek < k; |S—a] =™l

Pro= Pr(|8. —a| = en P 9) | 85—zl ¢ () Horh =5 < I
| I — & | = GFF_M lf*':H_l}v

Then by a similar argument as in Lemma 3, we have

(3.4) ZP sEW,E P

Hemh

Our next step is to show that to any ¢ = 0 there exists a constant A{e) such
that forn — k > A, we have

(3.5) Pio = (1 4+ P.y.

To prove this we divide the r-interval |2 — 2| = ok ""{k)™" into digjeint
subintervals I;; of lengths = e'en*Y(n) " where ¢ > 0is arbitrary. If we write

Pl = Pr (|8, — 2| Sen™gln) | By~ CI))
we have
F”] = Fr(8, — & I*'.J

where I} is an interval of lengths = (2 + ¢en "™(n) ™ < (2 + eln — B
(n — k)7 lying within the interval |2 — 2, 42| = en " 0(0) 7" + k(0
From Lemma 5 it is zeen that if n — & = 4,(e'),

AL + €)e
= A2 e — Bgln — B)°

gince Py, is a probability mean of P , we have

P{”

2(1 + €)e

{f}

{Saﬁ} Pt.n ﬁ mfﬂ.x é '\-’;_H-' {J‘E- o .I: 1;1{'?‘1- = -ili.::l

On the other hand, we have again from Lemima 5, ifn — & = A.de),

. 2(1 — &)
(3.7) P& 5 tn — s = Wy




SUMS OF INDEPENDENT VARIABLES 1013

From (3.0} and (3.7} follows (3.5).
Using (3.5) in (3.4) we get
m hud Hdd—1 m
Ef’nézm(ﬂ Pia+ (1 + 9 ER...)
Bk A oy S nebd

T

SEWMA+A+9 TP

- > Pl
(3.8) > Wiz ol

s A+Q+0 2 P
Now 2oy Py = = by (8.7) and (3.1). It follows from (3.8) by letting n — =
that

- 1
2 Wi =

femi T i E
Since e is arbitrary and the left-hand side does not depend on ¢ we have

(3.9) 2 Wem 1
Bl
Thus (3.3) follows.
Proor or Treorem 8. Taking 2 = 0 in (3.9) and denoting by E\ the eveny
| 8a| = eng(a)7,
we can write (3.9 as followa:

&(im‘=h

LT

where the sign 2, denotes disjunction of events. Now the event which consists
o the realization of an infinite number of the £,’s can be written as

(&)

where the sign [ | denotes conjunction of events. Hence

pe (11 ()i E..)) = lim (i E'..) =1

ol —— waml

Thus (1.5) is proved. The proof of (1.6) follows immediately from Lemma 5
and Borel-Cantelli lemma,

Pomvceron UsivERsITY
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