THE ASYMPTOTIC NUMBER OF LATIN RECTANGLES.*

By Pavy Eppiis and IeviNGg KarLAnssY

1. Imtroduction. The problem of cnumerating n by & Latin rectangles
was solved formally by MacMahon [4] using his operational methods. For
k=3, more explicit solutions have been given in [1], [2], [3], and [5].
While further exact enumeration seems difficult, it i8 an easy heuristic
conjecture that the number of w by & Latin rectingles iz asymptotic to
(n!)®exp (—&y). Becausze of an error, Jucob [2] was led to deny this con-
jeeture for k= 38; but Kerawala [3] rectified the crror and then verified the
conjecture to a high degree of approximation. The first proof for k=23
appears to have been given by Riordan [5].

In this paper we shall prove the conjecture not enly for k fixed (as
n—=:) but for b < (log n)¥** Az indieated below, a considerably shorter
proof could be given for the former case. The additional detail is perhaps
justified by (1) the interest attached to an approach to Latin squares (k==mn),
(2) the emergence of further terms of an asymptotic series (4), (3) the fact
that (logn)"* appears to be a “natural boundary™ of the method, (We
believe however that the actual break occcurs at k = n'/%)

2. Notation. An n by & Latin rectangle L is an array of » rows and k
columns, with the integers 1, - - .n in each row and all distinet integers in
each column. Let N be the number of ways of adding a (& 4 1)-st row to L
#0 a3 to make the angmented armay a Latin rectangle. We uze the sieve method
(method of inclusion and exclusion) to obtain an expression for N. From n!,
the total number of possible choices for the (k4 1)-st row, we take away
those having » clash with L in a given column—summed over all choices of
that column, then reinstate those having clashes in two given columns, ete
The result can be written

(1) N= 5 (—)dc(n—r)!

where A, is the number of ways of choosing r distinet integers in L, no two
in the same column. In particulsr 4, =1, A, = nk. To estimate the higher
values of A, we apply the sieve method again. The total number of ways of
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selecting r elements of L, not necessarily distinet integers but with no two in
the same column, is »O-&". This over-estimates A,: we have to take away those
selectionz which include a specified pair of 1's, #s,- - -, or a's, then reinstate
those which include two paire, ete. We may write the result

(®) Ar = E, (—)*B{r, 5}

Here B{r,#) is precisely defined as follows., Take any & of the neC': pairs of
g, + « «, 'y which can be formed in L. SBuppose that this selection involves in
all y elements; v may be as large as 35, or as small as the integer for which
yls = 5. Find the number of ways of adjoining r — g further elements, #o as
to form a set of » elements with no two in the same coluomn. The vesult of
summing over all choices of & pairs is, by definition, B{r.#). We note in
particular that

(4) S T )
[4} B{f', 1} =N i.-C;! "_1(-:1-_-: ==,

The B's may be avnalyzed further as follows. et Fis &) be the number
of waysz ol choosing = pairs of 1'z,- » »,#'s, which uze up ¢ elements in all,
and for which no two of the { elements lie in the same column. The number
of ways of expanding this selection of ¢ elements to v cloments, with no two
in the same column, is o O bt Tlence

(5) B(r,5) == 3 F(s, £) orCor B,
i

It is to he observed that extreme limits for the summation in (&) are given by
¢t = 25 and 5 = 40, or, more generously, Vs = #.

These quantities F'{s,1) are the ultimate building blocks from which the
exact value of & is construcied. We shall discuss them further in 4. For the
present the following crude inequality will suffice;

(6] Z F(s,t) < at* (k)"

The proof of (6} iz as follows. The left hand side is just the number of ways
of choosing a set of (any numhber of ) pairs which invelve in all precisely ¢
elements, In such a cholee at most [4/2] distinet integers are permissible,
and these may be taken in less than #** wayz. In all we have at mest
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s <2 ¢ pairs to dispose of in the selection. For each of these §* pairs we
have o £/2 < E* possibilities and hence for all of them at most (k%) ¢
choires, This establishes (6).

The varipus quantities defined in this section will be nged without further
explanation in the remainder of the paper.

3. Proof of the main result. We first prove

TaeoREM 1. If & < logn)**, then for sufficiently large n

(7) | Net/n!—1} < ne

where ¢ s o posiiive consland depending only on e

Proof. Define A(r,z) by

(8) Alr,2) = 2 (—)'B(r,9),

where z = [(logn)'*]. Then by the sieve’s well known property of being
alternately in excess and defect we have

(9) |A|'_B{"':0}'_Al:rr$}|'.:=:B(r:'ﬂ-
In (1) make the substitution
Ar= {4 —B(r,0) —A(r,x})} + B(r, 0) + A(r,z)

and uze (8) and (9). We find

(10) |¥—3 () alebr(n—r) ! [ S| 6|+ 2,
where

(11) G=-g{—}"d(r,m}|[ﬂ—r}h

(12) = %B{nz}{u—r] I

We proceed to study . With the use of (8) and (5), and an interchange
of summation signs, (11) becomes
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G/n! =*i (—)* S F(s,1) % ()" wetCre B4/ ()

where (n)p=n{n—1)- - - {n—r+4 1) is the Jordan facterial notatiom.
The change of variable r — ¢ 4 u transforms the final sum into

(=) ()¢ Z (— By s/ut = (=) (e — 8) /(n)s
where # is the remainder alter w—¢ terms ol the series for % Then
(13) |G|e*ﬂ1!§w§E!F{:_r:}f}{l—l—ﬂe*'}f{u};.

As noted above, the limits for ¢ lie hetween Veand 2s. Hencei=2r< 2 logn.
From this we readily deduce

(14) 1/ () << ™",
(15) et < g,

where £, ¢; are absolute constants. From (6), (13), (14), and {15) we
abtain

|G| &/t < e 3 (k) iutit
=1

with ey =& (1 4+ e2). In the fraction under the summation sign, the loga-
rithms of numerator and denominator ave respectively of the orders #*loglogn
and ¢ log n. Binee ? < 2(log )™=, it follows that for large a

(&%) F/nt < e
where ¢, 1= a positive constant depending only on e ITence

(16) | | e¥/nl < Baegn™ < wss,

We next turn our attention to the term H given by (12). From (5)
and an interchange of orders of summation,

o/l — 3 F(z,4) ﬁ‘,_[e,_, -t/ ().
t =

The final sum is the product of 1/{n)¢ by a portion of the series for e®
Hence
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Hin! < & F(z, t)/(n)s < 268 F (BH) /0o
i ¥

by (6) and (14). The fraction to be estimated is the same agz above but
the summation now starts at Vo = es(log n) 292, Tt follows that flogn
= eaf{log »)** 2, and we are able to swallow up a further term e®* whose

.

logarithm is less than 2(log n)®*=, Hence for large n

e () e
and

(1%) Hebnl < Bt < nre,

Combining (16). (17), and (10), we obtain (7}, for the sum on the left of
(10) may run to infinity at a cost of O(n—=). Thiz concludes the proof.
{(We may note that for the case where b is fixed s n— o, the proof
could be abridged as follows. We take = ==1; then the term & dizappears,
and an estimate of I7 is easily obtained from (4).)
From Theorem 1 we readily derive our main result:

Turoresm 2. Let f(n, k) be the number of n by k Latin rectangles and
suppose & << (log n)*=%, Then

(13} © fimE (D) Fexp (o) =1 a5 n— o,

FProof. From Theorem 1 it follows that f{n, 4+ 1) lies between the
limits f{n,é)nle (1 = n")., Taking the product from i =1 to k —1, we
find that f(n, k) lics between the limits

(n1)*exp (— pC) (1 = no)™,

Sinee (1 4+ w°)" and (1 —n*)"— 1 a8 n— oo, we obtain (18).

4. Further terms of the asymptotic series. A more careful argument
reveals that the error term in (7) is actually of the order of Fn. By detach-
ing the term B(r, 1} as woll as B(r,0) in (2), we can reduce the error to
the order of &*n? Continuing in thiz fashion, we may compute successive
terms of an asymptotic serics. The existence of such a series was conjectured
by Jacob [2, 337].

We shall merely sketch the results. Applving (1), (2), and (5) as we
did in 3, we find

Nf?b[:? {—}' ?F{S_. t}{ﬁ-—ajf{ﬂ}:.
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The term # may be dropped and we have

F(1,2)
(n)2

Thus all that is required is evaluation of the Fs That F(1,2) =n (s was
already implicitly noted in (4). For F(2,3) we observe that not more than
one integer may be used, that there are then n . C; choices for the three ele-
ments, and 3 cholees for the two pairs within them. Hence F(2, 8) = 3n ..
Similarly F(2,4) mcludes the term Snal’,, corresponding to the choice of
only one integer. If two different integers arve taken, there are ab iniiio
wlla(20:}? choices; but we must eliminate sclections which inelude two ele-
ments in the same column. An application of the sieve process to this last
difficulty yields

F(2,4) =300, 4 J2(x0)*—n ol (k—1)* 4 X,

F(2.3) | F(2,4)
B ™ e

(19) Net/nwm1— +

where X is the number of instances in which integers 4, § both oceur in two
different columns. It is noteworthy that this iz the first term which depends
upon the particular Latin rectangle to which a (k 4 1)-st row iz being added.
A simple argument shows that X = n0y(k—1), =0 that X/(n), is of
order n¥ or less, as are all the later terms of (19). Hence we have, correct
up to n2;
R gt 3y 20y W (x0)® R
B I T T B

=1—a0s/n+sCu(k+4) (3 —7)/120° - - -

By taking the product of the terms (20) from 1 to k—1, we obtain the
asymptotie series for f(n, k), the number of Latin rectangles:

(21)  f(n, k) (n!)*exp (C2)
— 1 — o 0s/n 30 (K — 382 4 8% — 30) /1202 - « -,

Far k=3, the right side of (21) becomes I —1/n—1/2n* 4+« . In the
tahle below we compare this with the exact value given by Kerawala in [3].

n 1—1/n—1/2n*  Exactvalue

of (21)

] a8 6995
10 895 89560
15 83111 H3126
20 94875 94831

pdi] D592 05023
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In attempting to push the asymptotic series still further, we run into
the diffieulty that terms like X, i.e., terms dependent upon the preceding
Latin rectangle. begin to play a vile in (20). However, it may be that in
{21) at least the term m n~* can be obtained without consideration of &, for
heuristically it seems likely that the “expectation ™ of X i ofn).

In conclusion we remark that the form of {21) strongly suggests that at
ahout' k = n'/* the expression ceases to be valid. We are unable to prove this

rigorously.
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