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THE ASYMPTOTIC NUMBER OF LATIN RECTANGLES .*

By PAUL ERDÖS and IRVING KAPLANSKY

1 . Introduction. The problem of enumerating n by k Latin rectangles
was solved formally by MacMahon [4] using his operational methods . For
k = 3, more explicit solutions have been given in [1], [2], [3], and [5] .
Wile further exact enumeration seems difficult, it is an easy heuristic
conjecture that the number of n by k Latin rectangles is asymptotic to
(-n!)'cexp (-),CY,) . Because of an error, Jacob [2] was led to deny this con-
jecture for k = 3 ; but Kerawala [3] rectified the error and then verified the
conjecture to a high degree of approximation . The first proof for k = 3 •
appears to have been given by Riordan [5] .

In this paper we shall prove the conjecture not only for k fixed (as
It--> c ) but for k < (loon) As indicated below, a considerably shorter
proof could be given for the former case . The additional detail is perhaps
justified by (1) the interest attached to an approach to Latin squares (k = n),
(2) the emergence of further terms of an asymptotic series (4), (3) the fact
that (log n) 3/ 1 appears to be a "natural boundary" of the method . (We
believe however that the actual break occurs at k = n 1 /3 . )

2 . Notation . An n by k Latin rectangle L is an array of n rows and k
columns, with the integers 1, • . n in each row and all distinct integers in
each column. Let N be the number of ways of adding a (k + 1)-st row to L
so as to make the augmented array a Latin rectangle . We use the sieve method
(method of inclusion and exclusion) to obtain an expression for X . From n !,
the total number of possible choices for the (k + 1)-st row, we take away
those having a clash with L in a given column-summed over all choices of
that column, then reinstate those having clashes in two given columns, etc .
The result can be written

where A, is the number of ways of choosing r distinct integers in L, no two
in the same column . In particular A, = 1, A1 = nk . To estimate the higher
values of A r we apply the sieve method again . The total number of ways of
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selecting r elements of L, not necessarily distinct integers but with no two in
the same column, is ,ti C,_k1'. This over-estimates A,- ; we have to take away those
selections which include a specified pair of 1's, 2's, - - - , or n's, then reinstate
those which include two pairs, etc- We may write the result

(2)

	

A, = E (-)sB(r,s) .
Y

Here B(r, s) is precisely defined as follows. Take any s of the to /C 2 pairs of
1's, - • • , n's which can be formed in L. Suppose that this selection involves in
all y elements ; y may be as large as 2s, or as small as the integer for which
,,C•, = s. Find the number of ways of adjoining r - y further elements, so as
to form a set of r elements with no two in the same column . The result of
summing over all choices of s pairs is, by definition, B (r, s) . We note in
particular that

(3)

(6)

B (r, 0) = nO r Ic"

(4)

	

B (r, 1) _ n kC,,,:C, •_2 k'•_°

The B's may be analyzed further as follows . Let fi'(s, t) be the number
of ways of choosing s pairs of 1's, • • • , n's, which use up t elements in all,
and for which no two of the t elements lie in the same column . The number
of ways of expanding this selection of t elements to r elements, . with no two
in the same column, is

	

kr_t . Hence

(5)

	

B(r, s) _ F( •s, t) „-X,-t kr-t .
t

It is to be observed that extreme limits for the summation in (5) are given by
t ~ 2s and s c tU, or, more generously, Vs t .

These quantities F(s, t) are the ultimate building blocks from which the
exact value of N is constructed . We shall discuss them further in 4. For the
present the following crude inequality will suffice

F (s, t) < n t/' (k''t) t' .
8

The proof of (6) is as follows . The left hand side is just the number of ways
of choosing a set of (any number of) pairs which involve in all precisely t
elements. In such a choice at most [1/2] distinct integers are permissible,
and these may be taken in less than nt/' ways. In all we have at most
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C, < t 2 pairs to dispose of in the selection . For each of these t2 pairs we
have k.C2 t/2 < k2 t possibilities and hence for all of them at most (k2 t) t'

choices . This establishes (6) .
The various quantities defined in this section will be used without further

explanation in the remainder of the paper .

3. Proof of the main result . We first prove

THEOREM 1 . If k < log n) 1 /2-1 , then for sufficiently large n

(7)

	

1 L ex/n!-11 <'n °

where c is a positive constant depending only on e.

Proof . Define A(r,x) by

a-1

A(r,x) _~ (-)8B(r,s),
8=~(8)

(9)

where x = [ (log n)1- E] . Then by the sieve's well known property of being
alternately in excess and defect we have

Ar-B(r,0)-A(r,x)I cB(r,x) .

In (1) make the substitution

Ar={Ar-B(r,0)-A(r,x)}+B(r,0)+ A (r, x)

and use (3) and (9) . We find

(10)

	

~ N-I (-)rnCrkr(n-r)

	

G I -}- II,
r=a

where
n

(11)

	

G=~ (-)'A(r,x)(n-r)!,
r=o

ex
(12)

	

H = Y_ B(r, x) (it-r) ! .
r=0

We proceed to study G. With the use of (8) and (5), and an interchange
of summation signs . (11) becomes
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n
(-) 9

	

F(s,'1) ~,' (-)r .,a-t(%r-tkr-t/(n)r
a=1

	

t

	

r=t

where (n),= n (n -1) . . . (n - r + 1) is the Jordan factorial notation .
The change of variable r = t + u transforms the final sum into

n:- t
(- ) t/(n)t

	

(-k)t`/~t'.= (- ) t (ek _e)/(r)t
u=a

where B is the remainder after n - t terms of the series for e -1L . Then

{13)

	

G ek/n 1 c_ Y- Y- F(s, t) (1 + Bel)/(n), .
8=1 f

As noted above, the limits for t lie between "/s and 2s . Hence t ::S~ 2x < 2log n .
From this we readily deduce

(14)

	

1/(n)t < c1n-t,

(15)

	

6ek < c 2 ,

where c, j c 2 are absolute constants . From (6), (13') . (14), and (15) we
obtain

as
G I eC/n. ! < c ;, E (k," i) t3/-la t/'-

t=1

with c 3 = c, (1 + c2 ) . In the fraction under the summation sign, the loga-
rithms of numerator and denominator are respectively of the orders t 2 log log n
and t log n . Since t < 2 (log n) 1~, it follows that for large n

(k't) "/,Itt/2 < n--c,

where c4 is a positive constant depending only on e . Hence

(16)

	

G I ek/n! < 2xc n c, < n-C3 .

We next turn our attention to the term II given by (12) . From
and an interchange of orders of summation,

II/a!=EF(x,f) ' ,Z-tC? r
t

	

r=t

(5)

The final sum is the product of 1/ (n) t by a portion of the series for ell.
Hence

4
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H/n! < ell F(x, t)/('n)t < cze'°Y, (k221)t 2/nt/2
t

	

t

by (6) and (14) . The fraction to be estimated is the same as above but
the summation now starts at \/ x ~ cg (log n) (1-6)12 . It follows that t log n

ce (log

	

and we are able to swallow up a. further term e'k whose
logarithm is less than 2(log n) 3 /'-E . Hence for large n

e°-k ( Je 2t) "/n t/2 < n °_
and

(17)

	

Her/n ! < 2xc1n-C: < 11 -c%

Combining (16), (17), and (10), we obtain (7) . for the sum on the left of
(10) may run to infinity at a cost of 0(n -0 ) . This concludes the proof .

(We may note that for the case where k is fixed as n- oo, the proof
could be abridged as follows . We take x =1 ; then the term G disappears,
and an estimate of 11 is easily obtained from (4) .)

From Theorem 1 we readily derive our main result :

THEOREM 2 . Let f (n, k) be the number of n by k Latin rectangles and
suppose k < (log n) 3~-~. Then

(18)

	

f(n,k) (n!)-kexp(k(J^)-.1 as n-> cc .

Proof. From Theorem 1 it follows that f + 1) lies between the
limits f (n, i) n ! e- ; (1 ± n-1 ) . Taking the product from i = 1 to k - 1, we
find that f (n, k) lies between the limits

(n!)kexp (-kG 2) (1

Since (1 + n-G)' and (1 -n °) k -- 1 as n-~ co, we obtain (18) .

4 . Further terms of the asymptotic series . A more careful argument
reveals that the error term in (7) is actually of the order of k'n' . By detach-
ing the term B (r, 1) as well as B (r. 0) in (2), we can reduce the error to
the order of k'ra2 . Continuing in this fashion, we may compute successive
terms of an asymptotic series . The existence of such a series was conjectured
by Jacob [2, 337] .

We shall merely sketch the results. Applying (1) . (2), and (5) as we
did in 3, we find

2',/n F(s,1)(ez-0)/(n)t,
s t
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The term 0 may be dropped and we have

(19)

	

Nek/n =1- F(1, 2)

	

F(2,3)

	

F(2, 4) -

(n)- + (n) 3 + (n) "

Thus all that is required is evaluation of the F's . That F(1, 2) =nkC 2 was
already implicitly noted in (4) . For F(2, 3) we observe that not more than
one integer may be used, that there are then n r.-C 3 choices for the three ele-
ments, and 3 choices for the two pairs within them . Hence F(2, 3) = 3nk03 .
Similarly F (2, 4) includes the term 3n ;-LC,,, corresponding to the choice of
only one integer . If two different integers are taken, there are ab initio
„CZ ( kC2 ) 2 choices ; but we must eliminate selections which include two ele-
ments in the same column. An application of the sieve process to this last
difficulty yields

F(2,4)=3nI.C,+nC2 (kC2) 2-n kC2 (k-1) 2 +X,

where X is the number of instances in which integers i, j both occur in two
different columns. It is noteworthy that this is the first term which depends
upon the particular Latin rectangle to which a (k + 1)-st row is being added .

A simple argument shows that X c n kC 2 (k -1), so that X/ (n),, is of
order n3 or less, as are all the later terms of (19) . Hence we have, correct
up to n 2 :

rrrC2

	

2n kC3

	

X2 (kC 2 )'(20)

	

Nee/n!=1- ( n) 2 + (n)3 + (n)4 + . .

= 1 -kC2/n +kC2 (k + 4) (3k - 7)/12n2 + . .

By taking the product of the terms (20) from 1 to k-1, we obtain the
asymptotic series for f (n, k), the number of Latin rectangles :

( 2 1)

	

f(n, k) (n!)'x exp (kC2)
=1-aC3/n+kCs(k3-3k'+8k-30)/12i + •

For k = 3, the right side of (21) becomes 1 - 1/n- 1/2n2 + • • . In the
table below we compare this with the exact value given by Kerawala in [3] .

I$

	

1 - 1/n -1/2n 2 Exact value
of (21)

5 .78 .76995
10 .895 .89560
15 .93111 .93126
20 .94875 .94881
25 .9592 .95923
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In attempting to push the asymptotic series still further, we run into
the difficulty that terms like X, i . e ., terms dependent upon the preceding
Latin rectangle . begin to play a role in (20) . However, it may be that in
(21) at least the term in n-3 can be obtained without consideration of X, for
heuristically it seems likely that the '' expectation" of X is o(n) .

In conclusion we remark that the form of (21) strongly suggests that at
about , k = -n" 3 the expression ceases to be valid. W- e are unable to prove this
rigorously .
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