SOME REMARKS ABOUT ADDITIVE AND
MULTIPLICATIVE FUNCTIONS

P. ERDOS

The present paper contains some results about the classical multi-
plicative functions ¢(n), ¢(n) and also about general additive and
multiplicative functions.

(1) It is well known that n/¢(n) and o(n)/n have a distribution
function.! Denote these functions by fi(x) and fu(x). (fi{x) denotes the
density of integers for which #/¢(n) =x.) It is known that both fi(x)
and f:(x) are strictly incrtasing and purely singular.! We propose to
investigate fi(x) and f:(x); we shall give details only in case of fi(x).
First we prove the following theorem.

TaEOREM 1. We have for every € and sufficiently large x
(1) exp (= exp [(1 + ¢az]) <1 — fi(x) <exp (— exp [(1 — ¢ax])
where a =exp(—7), v Euler's constant.

We shall prove a stronger result. Put 4,=][;_,p:, p: consecutive
primes. Define A, by 4:/¢p(A) 2x> Ay 1/d(Ar). Then we have

) i€ 1L—Fill) < By,

First of all it is easy to see that Theorem 1 follows from (2), since
from the prime number theorem we easily obtain that log log A4,
=(1-40(1))ax, which shows that (1) follows from (2).

(2) means that the density of integers with ¢(n) =(1/x)n is be-
tween 1/A4,and 1/4;'.

We evidently have for every n=0 (mod A4;), n/¢(n)=x, which

proves
1/4, £ 1 — fi(x).

To get rid of the equality sign, it will be sufficient to observe that
there exist integers u with #/¢(u) 2 x, (4, Ax) =1, and that the density
of the integers #=0 (mod #), ##0 (mod A}) is positive. This proves
the first part of (2). The proof of the second part will be much harder.
We split the integers satisfying n/¢(n) Z« into two classes. In the

first class are the integers which have more than [(1—e)k] =7 prime
factors not greater than Bpy, where B=B(e) is a large number. In
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1 These results are due to Schénberg and Davenport. For a more general result see
P. Erdés, J. London Math. Soc. vol. 13 (1938) pp. 119-127,
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the second class are the other integers satisfying n/¢(n) = x. It is easy
to see that the number of integers of the first class does not exceed

(3) bl TR s IS B

since 7(Bpx) =o0(px) (w(x) denotes the number of primes not greater
than x), and from the prime number theorem log 4,>{1—¢€)p: if &
is small.

Let now n be any integer of the second class. A simple argument

shows that
(- )< I(-) <1
s g i, L e s
pln ter 1 b log P&

The prime indicates that the product is extended over the p>Bp;.
The first inequality follows from the definition of 4, and from the
fact that = is of the second class, the second inequality follows from
the prime number theorem. Thus we have

1 £1€1
@ b3 :
pin 2 log ps
Denote now by J; the interval (B'py, BtHpy), i=1,2, - - . It follows
from (4) that for every integer of the second class there exists some ¢
such that

(5) Es'— 1————'“;:lc T

where in ), the summation is extended over the primes in J,. Thus
for some £, n must divide more than

(6) c1ei(BY/29) (pi/log pi) =

primes in J;. The density of the integers satisfying (6), that is, the
density of the integers of the second class, is less than

0 BB feieggeen <

that is, ) s, 1/p <1 for large enough k (B is independent of %}, if
B =B(¢) is large enough. Theorem 1 now follows from (3) and (7).
From Theorem 1 we easily obtain that

€1

1 [
im — Y exp (¢(n))

z—w X pal

exists. In fact we can also prove that for a<a
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lim -1- i exp (exp (¢(n))

7w X pey
exists. For a>a the limit is infinite.
THEOREM 2.
174 <1 = fi(2) < 17437
We omit the proof since it is very similar to that of Theorem 1.
THEOREM 3. Let e—0, then
1+ ¢ = (1 +o(1))a/loge,  fa(l + ¢ = (1 + o(1))a/log e

We prove only the first statement since the proof of the second is
essentially the same. Let # be an integer with #/¢(n) =1+ ¢. Clearly n
does not divide any prime p <(1 —(1+¢)")"1=¢e140(1). Thus

(8) fill +¢) < (14 o(1))a/log .
Denote by J, the interval
(ARl = 4075 1 = (L0~

If an integer #£0 (mod i), p:<(1—(14+€)~1)?, does not satisfy
n/¢p(n) <1+ ¢, then a simple computation shows that for some ¢ it
must have at least { prime factors in J,. Thus the number of these
integers does not exceed

1+ o) = (T i)‘ /1= ofafiog e,

tusl pinJ,

which together with (8) proves Theorem 3.

It follows from Theorem 3 that f{ (1) = . It would be easy to
show that f{ (n/¢(n)) = = for every =.

Denote by f1# and f,~ the distribution functions of

1\ 1
H(l—-—— and D —; a> 0.

pin ? din @
THEOREM 4.
o a o ao
A+ =Uto) ——  £7=U+o(t)) —:
log € log ¢!

We omit the proof since it is very similar to that of Theorem 3.
Let us denote by F.(x), a>0, the distribution function of
I (1 —1/log po)-1, a>0.
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THEOREM 3.
Fi(1 + ¢ = (1 + o{1))be,

thatis, Ff (1)=b. Also Fd (1) =0for <1 and F{ (1) = » fora>1.

We do not give the details of the proof since it would be long and
similar to that of Theorem 3. We just make the following remarks:
If n satisfies

2

pin logp

then n does not divide any prime p=exp(l/¢€). Thus F{/(1+¢€)
=<(1+4o(1))ae. But here (unlike in Theorem 3) we have Fi(1+4¢)
=(140(1))b, b<a. We obtain analogous results if we consider the
additive function Z,,n 1/log p. It is possible that F{ (x) exists for
every 1 <x, but this we can not prove.

(2) The following results are well known:

=1+

M) oy Sn 5

m=1 M m=1
The density of integers for which ¢(n+41)/(n+1)>0e(n)/nis 1/2, also
the density of integers for which ¢(n-+1)/(n+1)>¢(n)/n is 1/2.2
Now we prove the following theorem.

2

= (1 + o(1)) % 2

THEOREM 6. Let g(n)/log log log n— w . Then we have

n+g(n) m
(1 X % = (1 + o(1)) —*g(ﬂ)
(ii) The number of integers m in (n, n-t+g(n)) which satisfy
d(m—+1)/(m+1) >¢(m)/m equals (1-+0(1))g(n)}/2.
(iii) The number of integers m in (n, n-+g(n)) which satisfy
m/p(m) <c equals (1+0(1))g(n)fi(c). In other words the distribution
function of ¢(m)/m in (n, n+g(n)) is the same as the distribution func-

tion of ¢(m)/m.

All these results are best possible; they become false if for infinitely
many n, g{n) <c¢log log log n.

We prove only (i); the proof of (ii) and (iii) are similar. Let
A =A(n) tend to infinity sufficiently slowly. Put

M = Dl(m)Dz(m)!
m

2 P, Erdds, Proc. Cambridge Philos. Soc. vol. 32 (1936) pp. 530-540.
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where

1 1
Dim) = JI"(1— —), De(m) = JI"(1 - —).

pim ? plm P
The prime indicates that p =4, the two primes that p>4. We evi-
dently have

ntgin) ntg(n)
3 é(m) <Dy = (g(n))i(gl

I a
9 2
1 T
= @+ o IT (1= ;) = @+ o) Z gt
psSA 4 6
where the three primes indicate that the prime factors of d are not
greater than 4, and (g(n)/d) denotes the number of multiples of d
in (n, n+g(n)). Now we show that for sufficiently large 4 the num-
ber of integers in (#, #n+g(n)) which satisfy

(10) Dy(m) <1 — ¢
is o(g(n)). It will be sufficient to show that
(11) I Dulm) > (1 = p)o®

for every >0, the product over m runs in (#, n4g(n)). We evidently

have — 1
Lo >IL(-5) " 1L (-5)

where, in []i, 4 <p <g(n), and in [],, p runs through the prime fac-
tors greater than g(n) of n(n-+1) - - - (n+4g(n)). Clearly

¢ \9(m)

T
7oA P’

From the prime number theorem we have [],<.p <e?*. Thus

1 ¢

TI.> 11 (1 = —) B

=2y P log i 4

where y=log[n(n+1) - - - (n+g(n))]. Hence using g(n)/log log log n
— o, we obtain by a simple calculation that

II: > (@ = ng)otm

which proves (11) and therefore (10). From (9) and (10) we obtain by
a simple argument that
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ntg(n) ¢( ) atg{n) 1!'2
(12) >: —= > (1 —o(1)) 2 Di(m) = (1 + o(1))g(n) =

(i) now follows from 9 and (12).}

Now we are going to prove that (i) is best possible. Put g(N)
=clog log log N, n/2<N<mn. Further let A,, A, ---, 4,
r=[21 log log log ] be relatively prime integers all of whose prime
factors are less than 2! log # and for which

1/4 < ¢(d:)/4: < 1/2, dowe 1,8y w1,

This is obviously possible since

1 c 1 (log log log n)/2
(-3 < <@
P<(log n)/2 p log log » 4

Now choose /2 <N <n so that N+j=0 (mod 4}, j =r. This is pos-
sible since by the prime number theorem A4;-4; - - - 4,<n/2. (In all
cases where we refer to the prime number theorem a more elementary
result would be sufficient.) Clearly

N+(log log log #)/2 () & log log log »

m=N-+41 m 4
From (9) we have
Nio(¥) o(m) log log log »
a3 EP o) S(sm - EEET),
N+(log log log n)/2 ™ 2

Thus finally from (10) and (11) we obtain by a simple calculation
N+ ¢(m)

3 —-—<(1—6)-—g(N)

=N
which shows that (i) is best possible.*
THEOREM 7. Let gi(n)/log log n— . Then we have

atgi{n) o-(m) .u.z

= (14 o(1)) 5 gi(n)

(1)

(i) Let go(n)/log log log n—w. The number of integers m in
(n, n+ga(n)) which satisfy a(n+1)/(n+1)>0(n)/n equals (1+0(1))
-g(n)/2. ‘

* This proof is similar to a proof in P. Erdés, J. London Math. Soc. vol. 10 (1935)

pp. 128-131.
¢ This proof is similar to a proof of Chowla and Pillai, J. London Math. Soc. vol. 5

(1930) pp. 95-101.
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(ili) The number of integers m in (n, n+g(n)) whick satisfy o(m)/m
<c¢ equals (14+0(1)) g(n) folc).5 All these resulis are best possible.

We omit the proof of Theorem 7, since it is similar to that of Theo-
rem 6. We must allow gi(n)/log log n— e, since it is well known that
for some m <n, a(m) >c log log n (for example, m =] | ,<og mys2 £)-

Let f(n) =1 and F(n)=1 be multiplicative functions with

1= f(#) F(p) —
— "~ & o and
; ? s E b

Then we have:

THEOREM 8. Let A =A(n) tend to s'nﬁm'ty arbitrarily slowly, then

n+.al
"y % ) £ 8 BT E fim)
and ,,:_ -
—I > Fm) > (1 + o(l)) s ZlF(m)

The proof is quite trivial; it is similar to that of (9). It can be shown
that lim (1/7))_%..f(m) and lim (1/#)2 m_, F(m) exist.

Denote by V(n) the number of prime factors of # and by d(#n) the
number of divisors of #. We can prove analogs to Theorem 6 for these
functions. But the results are very unsatisfactory since for v(n) we
have to choose g(n) =n¢/l legn and for d(n), g(n) =n° for some suit-
able c. These results are probably very far from best possible.

(3) Let n=Pp17Pg7 - -« Pk, PPy - - PR, Put (P‘.ci)bi
=p;*itt, We prove the following theorem.

THEOREM 9. Let 1<x, then for almost all n the number of b’s greater

than x equals
x~1 log log n 4+ o(log log =).

REMARK, We immediately obtain that every interval (x, x+¢€)
contains (140(1)) (e/x(x+¢€)) log log n b’s.

We are going to give only an outline of the proof. First of all we can
assume that all the &’s are 1, since for large  the number of integers
not greater than n for which # or more of the a’s is greater than 1
is less than ez, since the number of these integers is clearly less than

(55) /<

& This result has been stated previously, see footnote 4.
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Denote by F(n) the number of prime factors p of # such that no prime
g in (p, p*) divides n. F(n) is thus the number of &’s not less than x.
We have

1
(14) E F(m) = — 10g log # + o(log log #).

m=1

We now give a sketch of the proof. Clearly

> F(m) = Z fa(m)

m=1
where f,(n) denotes the number of integers m <=, with m=0 (mod p)
and m#0 (mod ¢q), p <g<p* It is easy to see that for p<n*
fom) = (1 + o(1))n/px (p large),

Also for all p i y
fo(n) = n/p.

Thus
2 n n
2 Fm) =3 —4+0 2, —+ o(log log n)
m=1 psnt PX nt<p<n P

- (1 4 ay R log log n

which proves (14). Now we have to show that
F(m) = (1 + o(1))(log log n)/=
for almost all m <n. We use Turdn’s method. We have

n

E (F(m) — % log log n)z

m=1
n

= F (m)-——loglognZFm)+ (l(:gl#)2

Now - =
[ I l 2
(15) 3 Fim) = (1 + o(l))n(—"—g—:'c'ig—?’;).

We omit the proof of (15), it is similar to the proof of (14). Thus

i

E (F(m) - j— log log n)2= o(n(log log n)?)
x

M=l
which proves Theorem 9.
¢ P, Tur4n, J. London Math. Soc. vol. 9 (1934) pp. 274-276.
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THaEOREM 10, For almost all n we have
> bi = (1 + o(1)) log log # log log log n.

Piln
THEOREM 11. Let 1 <x be any number. For almost all n there exisi
intervals (m, m?), m*=n, such that for every m <y <m* n#0 (mod y).

We omit the proofs of Theorems 10 and 11. They are similar to that
of Theorem 9.

For some time I have not been able to decide the following ques-
tion: Is it true that almost all integers # have divisors d; and ds, such
that d, <d: < 2d;.

(4) Let f(n) be an additive function which has a distribution func-
tion. Then it is well known that’

! na
(16) E’-r(:%uw, 2 U(f) <@
f®) =f(p) if |f(p)| =1 and f(p)'=1if |f(p)| >1. Assume now that

|f(p2)| £ C (f(n) is assumed to be real valued). We prove the follow-
ing theorem.

THEOREM 12. Let | f(p*)| Se¢. Denote by F(x) the distribution func-
tion of f(x). We have
F(x) > 1 — exp (— ¢2),

for every ¢ and sufficiently large x. In other words the density of integers
with f(n) Zx s less than exp(—cx).

Put g(n) =exp(2¢f(n)), g(n) is multiplicative and clearly has a dis-
tribution function. Define

fm)y = 22 f(p)y  gi(m) = exp (2¢fu(n)).

pln,p=k

For sake of simplicity we assume that f(%) =f(¢). It is well known
that the distribution function Fi(x) of fi(n) converges to F(x), thus
the distribution function G:(x) of gi(x) converges to G(x) (G(x) is the
distribution function of g(x)). Suppose now that Theorem 12 is false,
then there exists a constant ¢ and infinitely many %, with x,— < and

Flx) > 1 — exp (— cx.).
Therefore for any r there exists a % so large that

Fu(x,) > 1 — exp (— cx.).

7 P. Erdés and A. Wintner, Amer. J. Math. vol. 61 (1939) pp. 713-721.



536 P. ERDOS {June

Thus the density of integers with g(n) >exp(2cx,) is greater than
exp(—ex,) and hence

Zssr(rn) > (1 — ) exp (¢ca,)n

for n sufficiently large. Thus for any 4 there exists & and #,, such that
for all n>n,

(17) Egk(m) > An.
On the other hand
3 lom) = Zél,?,lf*@ - éﬁ“ + (@) ~ D).
Put gi(p) —1 =hi(p). Clearly
aim = BT+ hi) = S 5]t

M=l p|m

where kk(d) '—'H,ﬂ dkk(}')). Thus
hk( ) k()
> nlm 503 feI’I(l + )

From the fact that g(n) has a distribution functien and that f(p*) is
bounded, it easily follows that (we shall give the details in the proof of
Theorem 13)

HD 5 )

? »

Thus finally

< oo, h(f) = g(?) o

h(p)
Z g;(m) < oan H 14 Tp) < ¢am,
m=L

which contradicts (17), and this contradiction establishes the theo-
rem.

It is easy to see that Theorem 12 is best possible. Let ¢(x)
tend to infinity arbitrarily slowly; then there exists an additive
function f(n) such that its distribution function F(x) satisfies
F(x;) <1 —exp(—¢(x,)x;) for an infinite sequence x: with x;— .
We omit the proof.

TBEOREM 13. Let g(n) =0 be muliiplicative. Then the necessary and
sufficient condition for the exislence of a distribution function is that
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g, g0,

where (g(p)—1) =g(p) -1 if |g(p) —1| =1 and 1 otherwise.

The proof follows very easily from (16). Put log(g(n)) =f(n). g(n)
has a distribution function if and only if f(x) has a distribution func-
tion. Thus from (16)

’ 2
> (log g(#)) cwm B ((log g($))") e
P) ? P) ?

Now it follows from (19) that if we neglect a sequence of primes g with

>1/g< w that |g(p)—1| <1/2. Thus
log g(p) = log (1 + (g(p) — 1)) = g(p) — 1+ (1/2)(g(p) — )2+ - - -.

Also simple computation shows that (log g(p))!> (1/4)(g(p) — 1)
Thus from (19)

b}

(19)

5 cgwﬁ— Dt

and

2 ((1/2)(g(p) — 1)+ (g(p) — 1*+ -+ ) < o.

Thus Y ,(g(p) —1)/p < =, which shows that (18) is necessary.
If the two series in (18) converge, then clearly

log g(#) (g(p) — 1)  (1/2)(g(p) — 1)*
e i i

and

> (log i(?))’ oS5 (g(P)p— 1) e

which shows that f(#), and therefore g(n), has a distribution function.
Thus (18) is necessary, which completes the proof of Theorem 13.

These results suggest that if g(#) is multiplicative, satisfies (18),
|g(#%)| <c, then g(n) has a mean value, that is, lim(1/%) %.,f(n)
exists. I have not yet been able to prove this.

UxiversiTY oF MICHIGAN



