
SOME REMARKS ABOUT ADDITIVE AND 
MULTIPLICATIVE FUNCTIONS 

The present paper contains some results about the classical multi- 
plicative functions 4(n), a(n) and also about general additive and 
multiplicative functions. 

(1) It is well known that n/4(n) and u(n)/% have a distribution 
functi0n.l Denote these functions byfr(x) andf&z). (jr(x) denotes the 
density of integers for which n/4(n) Ix.) It is known that both jr(x) 
and fi(x) are strictly incrtasing and purely singular.’ We propose to 
investigate jr(~) and j’i(x); we shall give details only in case of jr(x)‘ 
First we prove the following theorem. 

THEOREM 1. We have for every E and suficiently large x 

(1) exp (- exp [(1 + t)uz]) < 1 - jr(x) < exp (- exp [(1 - E)UX]) 

where a =exp( -r), y Euler’s constant. 

We shall prove a stronger result. Put A,=E,lpi, pi consecutive 
primes. Define Ak by Ak/$(Ak) Lx>Ak--l/4(A~-l). Then we have 

(4 
l--r 

l/Ak < 1 -jr(x) < l/& . 

First of all it is easy to see that Theorem 1 follows from (2), since 
from the prime number theorem we easily obtain that log log Al, 
= (1 +o(l))ax, which shows that (1) follows from (2). 

(2) means that the density of integers with 4(n) 5 (l/x)n is be- 
tween l/Ak and l/Ahl-*. 

We evidently have for every n=O (mod Ah), n/+(n) 2x, which 
proves 

l/An, 6 1 - jr(x). 

To get rid of the equality sign, it will be sufficient to observe that 
there exist integers u with u/#J(u) 2 X, (u, Ah) = 1, and that the density 
of the integers n=O (mod u), n#O (mod Ak) is positive. This proves 
the first part of (2). The proof of the second part will be much harder. 
We split the integers satisfying n/4(n) 2% into two classes. In the 
first class are the integers which have more than [(l - EJ~] =r prime 
factors not greater than BP,, where B =B(eJ is a large number. In 
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1 These results are due to khanberg and Davenport. For a more general result see 
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the second class are the other integers satisfying n/$(n) LX. It is easy 
to see that the number of integers of the first class does not exceed 

(3) 2 r(Bpq& = f ‘Pk’/& < l/A ;-’ 

since a(Bp,) =a&,) (r(x) denotes the number of primes not greater 
than x), and from the prime number theorem log A,> (1 - c)& if ~1 
is small. 

Let now n be any integer of the second class. A simple argument 
shows that 

g+-$i&-)<l-2. 

The prime indicates that the product is extended over the $>Bpk. 
The first inequality follows from the definition of Ak, and from the 
fact that n is of the second class, the second inequality follows from 
the prime number theorem. Thus we have 

Denote now by J* the interval (B*p,, B*+lpk), t =1, 2, . . q . It follows 
from (4) that for every integer of the second class there exists some t 
such that 

(5) c ,$>a 

Cl 

Pin 2’ log Pk 
where in c* the summation is extended over the primes in Jt. Thus 
for some t, rz must divide more than 

(6) cl~l(B*/2*)(pk/log pk) = Bf 

primes in Jt. The density of the integers satisfying (6), that is, the 
density of the integers of the second class, is less than 

that is, cP in J* l/p < 1 for large enough k (B is independent of K), if 
B = B( ~1) is large enough. Theorem 1 now follows from (3) and (7). 

From Theorem 1 we easily obtain that 

lim L. 2 exp (4(S)) 
z-+=c x n-1 

exists. In fact we can also prove that for cr<a 
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exists. For a>a the limit is infinite. 

THEOREM 2. 

l/A:* < 1 
1-c 

- fi(;lG) < l/Ak . 

We omit the proof since it is very similar to that of Theorem 1. 

THEOREM 3. Let e-4, then 

fi(l + 4 = (1 + o(l))a/log E--l, j-2(1 + t) = (1 + o(l))a/log g-1. 

We prove only the first statement since the proof of the second is 
essentially the same. Let n be an integer with n/&n) 5 1 + c. Clearly n 
does not divide any prime p < (1 - (1 + ~)-l)-l= e-l+ O( 1). Thus 

(8) fl(l + c) < (1 + o(l))u/log g-1. 

Denote by Jt the interval 

(4”‘(1 - (I + $--‘)--‘, 4’(1 - (1 + $-y-l). 

If an integer n#Cl (mod fii), pi < (1 - (1 +~)-r)-~, does not satisfy 
n/+(n) S 1+ t, then a simple computation shows that for some t it 
must have at least t prime factors in Jt. Thus the number of these 
integers does not exceed 

which together with (8) proves Theorem 3. 
It follows from Theorem 3 that fi (1) = co. It would be easy to 

show that f{ (n/4(n)) = 00 for every n. 
Denote by fi” and fia the distribution functions of 

a > 0. 

THEOREM 4. 

f:“‘(l + e) = (1 + O(1)) &, p = (1 + O(1)) -Jz- * 
log t-1 

We omit the proof since it is very similar to that of Theorem 3. 
Let us denote by Fe(x), a>O, the distribution function of 

HP& -l/log py, a>O. 
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THEOREM 5. 
Fl(1 + 4 = (1 + oU)W, 

thatis,F~(l)=b.AZsoF,‘(l)=Ofora<landF~(l)= 03forCY>l. 

We do not give the details of the proof since it would be long and 
similar to that of Theorem 3. We just make the following remarks: 
If n satisfies 

c 1 -s;l+e 
Fin 1% P 

then n does not divide any prime p lexp(l/e). Thus Fi’ (1 +(F) 
5 (l+o(l))ae. But here (unlike in Theorem 3) we have Fi(l+~) 
= (1 +o(l))b, b <a.- We obtain analogous results if we consider the 
additive function xpln l/log p. It is possible that Fi (x) exists for 
every 15x, but this we can not prove. 

(2) The following results are well known: 

c = s!? = (1 + o(1)) f 5, c 
m-1 m 

= * = (1 + O(1)) f x. 
m-1 m 

The density of integers for which a(rt+l)/(n+l) >~(n)/n is l/2, also 
the density of integers for which #(n+l)/(n+l)>4(n)/n is l/2.9 
Now we prove the following theorem. 

THEOREM 6. Let g(n)/log log log a* ~0. Then we have 

(ii) The number of integers m in (n, n+g(n)) which satisfy 

#++l>l(m+l) W(m)lm -%zua~s (1So(l)k(n)/2. 
(iii) The number of itztegers m in (12, n+g(n)) which satisfy 

m/#(m) $c equals (l+o(l))g(n)fi(c). In other words the distribution 
function of &m)/m in ( n, n+g(n)) is the same as the distribution func- 

tion of #(m)/m. 

All these results are best possible; they become false if for infinitely 
many n, g(n) <c log log log n. 

We prove only (i); the proof of (ii) and (iii) are similar. Let 
A =A (n) tend to infinity sufficiently slowly. Put 

1 P. Erdtk, Proc. Cambridge Philos. Sot. vol. 32 (1936) pp. 530-540. 
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Dl(rn) = n’ 1 - + , 
Plm ( > 

D2(m) = fl” 1 - $ . 
Plm ( ) 

The prime indicates that $SA, the two primes that p>A. We evi- 
dently have 

= (1 + O(l))g(n)p~ (1 - $) = (1 + 0)) f g(n) 

where the three primes indicate that the prime factors of d are not 
greater than A, and (g(n.)/d) denotes the number of multiples of d 
in (n, n+g(n)). Now we show that for sufficiently large A the num- 
ber of integers in (n, s+g(n)) which satisfy 

(10) Do(m) < 1 - e 

is o(g(n)). It will be sufficient to show that 

(11) In;T- D&n) > (1 - ?I)~(“) 

for every 7 >0, the product over m runs in (n, n-l-g(m)). We evidently 
have 

where, in nr, A <p Sg(n), and in HZ, p runs through the prime fac- 
tors greater than g(n) of n(n+l) * * * (n+g(n)). Clearly 

From the prime number theorem we have &~&<P. Thus 

where y=log[fz(n+l) * . . (n+g(n))]. Hence using g(n)/log log log n 
+ 00, we obtain by a simple calculation that 

II2 > (2. - 712)0(4 

which proves (11) and therefore (10). From (9) and (10) we obtain by 
a simple argument that 
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n+u(n) 4(m) n+o(n) 
(12) c 

?npn 
--g- > (1 - o(l)) c D&z) = (1 + o(l))g(fi) f . 

m=n 

(i) now follows from 9 and (12).$ 
Now we are going to prove that (i) is best possible. Put g(N) 

= c log log log N, n/2 <N<n. Further let AI, AZ, - - * , A,, 
r = [Z-r log log log n] be relatively prime integers all of whose prime 
factors are less than 2-r log n and for which 

l/4 < #J(&)/Ai < l/2, i = 1, 2, * - - , 1. 

This is obviously possible since 

,,,I,2 (1 - +) < log ;og * < (y”’ log log n)f2. 

Now choose n/2 <N <n so that N+j=O (mod A J, j s;r. This is pos- 
sible since by the prime number theorem Al-A2 - - - A,<n/2. (In all 
cases where we refer to the prime number theorem a more elementary 
result would be sufficient.) Clearly 

Nftlog log log n) 12 4(m) log log log n 
c -y< 4 * 

a-N+1 

From (9) we have 

Nfe (N) 
(13) 

d4 c - log log log n 

> 
* 

N+(log log tog d/2 m 

2 

Thus finally from (10) and (11) we obtain by a simple calculation 

Nh(N) 6(m) 
c- < (1 - c) m-N m 

which shows that (i) is best possibie.’ 

THEOREM 7. Let gr(n)/log log ?z+ a. Then we have 

(3 
n+Ul(*) g(m) 
c 79 - = 

(1 + 4J)) - km, 

m=n m 6 

(ii) Let g2(n)/log log log n-w. The number of . . . , 
integers m in 

(n, n+g2(n)) which satisfr a(n+l)/(n+ 1) >a(n)/n equals (1 -j-o(l)) 

l dn)/2. . 
8 This proof is similar to a proof in P. Erd&, J. London Math. Sot. vol. 10 (1935) 

pp. 128-131. 
4 This proof is similar to a proof of Chowla and Pillai, J. London Math. SAC. vol. 5 

(1930) pp. 95-101. 
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(iii) The number of integers m in (n, n-j-g(%)) which satisfy o(m)/m 
<c equals (l-l-u(l)) g(n) fi(c).5 All these results are best possible. 

We omit the proof of Theorem 7, since it is similar to that of Theo- 
rem 6. We must allow gr(n)/log log n+ 00, since it is well known that 
for some m In, a(m) >c log log n (for example, m =n P<CrOg nj,~ p). 

Letf(n) 5 1 and F(n) 2 1 be multiplicative functions with 

= l -P-@) < m and x 
F(P) - 1 < o. 

P P P * 

Then we have: 

THEOREM 8. Let A =A(n) tend to in$nity arbitrarily slowly, then 

The proof is quite trivial; it is similar to that of (9). It can be shown 
that lim (l/n)z,,f(m) and lim (l/n)rm,r F(w) exist. 

Denote by V(n) the number of prime factors of n and by d(n) the 
number of divisors of n. We can prove analogs to Theorem 6 for these 
functions. But the results are very unsatisfactory since for u(n) we 
have to choose g(n) =n */log log* and for d(n), g(n) =nc for some suit- 
able c. These results are probably very far from best possible. 

(3) Let n=plrr1p2rr2 - ’ ’ pkakp fi1~‘<p2~~ < ’ - ’ <pkaka Put (piai)ki 

=piai+l. We prove the following theorem. 

THEOREM 9. Let 1 <x, then for almost all n the number of b’s greater 

than x equals 
x-1 log log n + o(log log n). 

REMARK. We immediately obtain that every interval (x, X+E) 
contains (1 -/-o(l)) (E/X(X+ e)) log log n b’s. 

We are going to give only an outline of the proof. First of all we can 
assume that all the cy’s are 1, since for large r the number of integers 
not greater than n for which r or more of the CY’S is greater than 1 
is less than en, since the number of these integers is clearly less than 

6 This result has been stated previously, see footnote 4. 
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Denote by F(n) the number of prime factors p of n such that no prime 
q in (p, pz) divides n. F(n) is thus the number of b’s not less than x. 
We have 

(14) j+) = 4 log log n + o(log log m). 

We now give a sketch of the proof. Clearly 

@m) = chbn) 
P 

where fP(n) denotes the number of integers m Sn, with m =O (mod p) 
andm~O(modp),p<q<~.Itiseasytoseethatforfi<n~ 

f&l = (1 + 4mdP~ (P law). 
Also for all p 

fP(d 5 n/P* 

Thus 

p(m) =pge + + oseg<n; + 41% 1% 12) 
= (1 + o(1)) log ‘,“” R ) 

which proves (14). Now we have to show that 

F(m) = (1 i- o(l)>(log log n>/x 

for almost all m Sn. We use Turftn’s method.” We have 

5 (F(m) - $ log Iog n)’ 
m-1 

= 2 F2(m) - 3 log log rt glF(m) + n (log ‘,“” “>: 
m-1 

Now 

2 Fa(m) = (1 + o(l>>n (log ‘,“” “)’ 
m-l 

We omit the proof of (151, it is similar to the proof of (14). Thus 

2 (F(m) - b log log n)“= o(n(log log ?2)3 
m-1 

which proves Theorem 9. 

6 P. Turdn, J, London Math. Sac. vol. 9 (1934) pp. 274-276. 
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THEOREM 10. For almost all n we have 

c bi = (1 f o(1)) log log ?z log log log n. 
PiI% 

THEOREM 11, Let 1 <x be any number. For almost all n there exist 
interoak (m, m=), mzSn, such that for every m $y 5m2, n#O (mod y). 

We omit the proofs of Theorems 10 and 11. They are similar to that 
of Theorem 9. 

For some time I have not been able to decide the following ques- 
tion: Is it true that almost all integers n have divisors dr and dz, such 
that dr <dtl <Zdr. 

(4) Let f(n) be an additive function which has a distribution func- 
tion. Then it is well known that’ 

(16) 

f(g)‘=f(p) if [f(p)/ 51 and f(P)‘=1 if [f(p)/ >l. Assume now that 
If(P) I S c (f( H is assumed to be real valued). We prove the follow- > 
ing theorem. 

THEOREM 12. Let 1 f(p) 1 SC. Denote 6y F(x) the distribution func- 
tion of f(x). We have 

F(x) > 1 - exp (- cx), 

for every c and suj’iciently large x. In other words the density of integers 
withf(n) 2x is less than exp( -CCC). 

Put g(n) =exr#cf(n>>, d n is multiplicative and clearly has a dis- > 
tribution function. Define 

fd4 = ,,nEskfw* gdn) = exp (Zcj&)). 

For sake of simplicity we assume that f(fia) =f(p). It is well known 
that the distribution function FB(x) of fh(n) converges to F(x), thus 
the distribution function Gk(x) of gk(x) converges to G(x) (G(x) is the 
distribution function of g(x)). Suppose now that Theorem 12 is false, 
then there exists a constant c and infinitely many xr with x,-f 00 and 

F(xJ > 1 - exp (- GZ,). 

Therefore for any r there exists a K so large that 

Fdx,) > 1 - exp (- 6~~). 

7 P. Erdijs and A. Wintner, Amer. J. Math. vol. 61 (1939) pp. 713-721, 
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Thus the density of integers with gk(n) >exp(2cx,) is greater than 
exp( - GX,) and hence 

Cg&) > 11 - E) exp (cX,).n 
men 

for n sufficiently large, Thus for any A there exists k and no, such that 
for all n > no 

(17) m;*gkbd > An. 

On the other hand 

mp4 = gI-g.(P) = eIIm~l + Its(P) - 1)). 
- 

Put gk(P) - 1 =/z-b($). Clearly 

where h&Q =&,,&(p). Thus 

From the fact that g(n) has a distribution function and thatf(pa) is 
bounded, it easily follows that (we shall give the details in the proof of 
Theorem 13) 

VP> 

Cpim, - 

c (h(P)>” < w 

WI = dP> - 1. 

P P P ’ 

Thus finally 

which contradicts (17), and this contradiction establishes the theo- 
rem. 

It is easy to see that Theorem 12 is best possible. Let r$(z) 
tend to infinity arbitrarily slowly; then there exists an additive 
function f(n) such that its distribution function F(x) satisfies 
F(r;) <l -exp( -$(~Jxi) for an infinite sequence xi with xi-m. 
We omit the proof. 

THEOREM 13. Let g(n) 20 be multiplicative. Then the necessary and 
suficient condition for the existence of a distribution function is that 



19461 ADDITIVE AND MULTIPLICATIVE F-UNCTIONS 537 

(18) 
c UP> - 1)’ < w c KdPF--o’)2 < w 

P ‘P 
3 

P P 

where (g(p)--l)‘=g(p)--1 if Ig(p)-11 r1 and 1 otherwise. 

The pruof follows very easily from (16). Put log(g(n)) =f(n). g(n) 
has a distribution function if and only if f(n) has a distribution func- 
tion. Thus from (16) 

(19) 
c (hz g(P)>’ < w, 

P 

c (0% g(P))‘)’ < w 

P P P * 

Now it follows from (19) that if we neglect a sequence of primes r~ with 
cl/g < w that 1 g(p) - 11 <l/2. Thus 

log g(P) = 1% (1 + MS) - 1)) = g(p) - 1+ W)MP) - 1>* + * * * - 

Also simple computation shows that (log g(p)) l> (l/4) (g(p) -l)*. 
Thus from (19) 

c (g(P) - 1)” < w 

P P 
and 

z$ (u/m(P) - 112 + (g(P) - 1)” + * ’ * > < w- 

Thus ~pk(P~-l)/P < 00, which shows that (18) is necessary. 
If the two series in (18) converge, then clearly 

c 1% g(P) = 
=( 

(g(P) - 1) + (W)MP) - II2 + . . . < w 
P P P P P 

and 
c (h3 S(P))” 

<CC 
k(P) - iI2 < w 

I 
9 P P P 

which shows thatf(n), and thereforeg(n), has a distribution function. 
Thus (18) is necessary, which completes the proof of Theorem 13. 

These results suggest that if g(G) is multiplicative, satisfies (18), 
Ig($a)) <c, then g(n) has a mean value, that is, lim(l/x)~~,,f(n) 
exists. I have not yet been able to prove this. 
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