SEQUENCES OF PLUS AND MINUS

By PAUL ERDOS anp IRVING KAPLANSKY

UPPOSE 7 one's and an equal number of minus one’s are ar-

ranged in a series. In all there are .,,C, possible arrangements.
For example, when n = 2 the following 6 (= .(,) arrangements are
possible:

1+1—-1-1 -14+1+1-1
L= 1 1] =11 =11
Il 1 =11 =l1—14141

The sum of any of these series is, of course, 0. A partial sum, formed
by breaking off a series at a point, can be either positive or negative;
in any case it lies between # and —#. In connection with an investi-
gation being made by one of the authors, the following question arose:
in how many of the arrangements are all the partial sums non-negative?

Of the 6 arrangements above, two (the first two) are acceptable.
Similarly, of the 20 arrangements for n = 3, the following 5 are ac-
ceptable:

14+141~-1-1-1
Il =l Ll = L
141 —-1~-1+4+1-1
Tl il =1l
1=-141-141-1

and of the 70 arrangements for # = 4, one can verify that there are 14
good ones. It is now easy to guess the right formula: in general
0Ca/(n + 1) of the »,C, arrangements fulfill the condition.

It is a curious fact that, in order to prove this conjecture, it seems
to be wise to generalize as follows: let there be m one’s and 7 minus
one’s and let it be required that all partial sums are at least m — .
Let us denote by f(m, #) the number of arrangements that fulfill this
condition. If m > n 4 1, it is evident that already the first partial
sum cannot fulfill the condition, for it cannot be greater than 1. Thus

fm,n) =0 (m>n+ 1), (1

If m = n or n + 1, we shall have to begin the series with 1, Then
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we are left with m — 1 one’s and »# minus one’s, and the partial sums
are now to be greater thanm — n — 1. Hence

flm, n) = flm — 1, n) (m=mnorn -+ 1). (2)
Finally if m < =, we are entitled to begin with either 1 or —1 and we
find similarly
flm,n) = flm — 1, n) +flm,n —1) (m<mn). (3)

One can now easily verify by induction that the solution of equations
(1), (2), (3), with the boundary conditions f(1, 0) = f(0, n) = 1, is
given by (1), (4), and (5):

n—m-+1
flm, n) = ~ 5411 il (m < n) (4)
fn 41, n) = 2C/(n + 1). (5)
By taking m = = in (4), we obtain in particular the result earlier con-

jectured.

The problem can be given in a chess-board setting. Take a one-
dimensional board stretching to infinity to the right and bounded to
the left, and place a king at the left-hand end. Then f(n, #) is the
number of ways for the king to make 27 moves which return it to its
starting point. The corresponding problem for a two-dimensional
board seems to be quite difficult if we permit the king its diagonal
moves; however, if we restrict the king to horizontal and vertical
moves the answer is just [f(z, )]

A problem that further suggests itself is to place the king in the
middle of the board and ask for the number of ways for it to take a
trip to another designated square. In the one-dimensional case this
is conveniently formulated as follows: in how many ways can m one’s
and » minus one’s be arranged so that all partial sums are at least
m — n — a? 1f we iet the desired number be g(m, #, @) then g(m, n,
0} = f(m, n), and for @ <0 we have g(m, n, a) = 0 since the final sum
cannot be greater than m — n. We can get a recurrence formula by
splitting the acceptable arrangements into two subsets: those which
finish with 1 and those which finish with —1. In the former case
we are left with m — 1 one’s and # minus one’s to be arranged with
partial sums of at least m» — # — @, and there are g(m — 1,2, — 1)
such arrangements. Similarly there are g(m, # — 1, ¢ 4 1) in the latter
group so that we have

glm,ma) =gm —1,na —1)+glmn —1,a + 1).
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Setting @ = 0, 1, 2 in succession we find

g(m, n, 1) = f(m, n + 1)
o(m, n, 2 fm,n+2) —flm~1,n-+1)
g(m, n, 3) = flm, n + 3) — 2f(m — 1, n + 2)

and the general formula is

gm, n, a) = Ijwz:](—l)" a—Ciftm — 4, m +a — 1)
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118. Factorials and Sub-factorials. The number of permutations P, of n distinct
objectsnatatimeis P, =n/ =1.2.3.. .0 Obviously, Paiy = (7 + 1) Pa. The number
of permutations of » objects so that none of them occupies its original position is Py’ =
nl[l = 1/11 41t — Yol 1/it = . 4= (=1)"1/n/], sometimes called sub-factorial of n.
The first eight successive values of P, are: Py = 1, Py' = 0, Py’ = 1, Py’ = 2, P’ = 0,
Py’ = 44, Py = 265, Py’ = 1854, Py’ = 14,833. The recurrences P,.1' = n(P,' + Pr_1'),
and Ppy ' = (# + 1)P,;" 4+ (—1)»*! are known in the literature.

The [ollowing relationship seems to be new:
Po=(1+P)0=1-+ CP + CP*4 GP*+ ... + C.P'™,

where C;, C; ... are the corresponding binomial coefficients and P’ stands for P,
For example, 4! = 1 + 4-0 + 614+ 4.2 + 9; 5! = 1 4+ 5.0 + 10-1 + 10-2 4
5:9 + 44 = 120, ete.

S. GurTMAN
119. The Dual of the above Formula. The formula
= (P'+ 1)
remains valid when P and P’ are inten:hm:lged and the plus is changed to a minus, yielding
=& -1~

For example, P,/ = 9 = 4i—-43'+82"-—41‘+1
Py =~14—a'—-:|4'+103l—102]+51l—1

J. GINsBURG
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