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SUPPOSE n one's and an equal number of minus one's are ar-
ranged in a series . In all there are ~„C„ possible arrangements .

For example, when n = 2 the following 6 (_ }C2) arrangements are
possible

The sum of any of these series is, of course . 0 . A partial sum, formed
by breaking off a series at a point, can be either positive or negative ;
in any case it lies between n and -n. In connection with an investi-
gation being made by one of the authors, the following question arose :
in how many of the arrangements are all the partial sums non-negative?

Of the 6 arrangements above, two (the first two) are acceptable .
Similarly, of the 20 arrangements for n = 3, the following 5 are ac-
ceptable :

and of the 70 arrangements for n = 4, one can verify that there are 14
good ones . It is now easy to guess the right formula : in general
2.C./(n + 1) of the uC„ arrangements fulfill the condition .

It is a curious fact that, in order to prove this conjecture, it seems
to be wise to generalize as follows : let there be m one's and n minus
one's and let it be required that all partial sums are at least m - n .
Let us denote by f (m, n) the number of arrangements that fulfill this
condition . If m > n + 1, it is evident that already the first partial
sum cannot fulfill the condition, for it cannot be greater than 1 . Thus

f (m, n) = 0 (m>n+1). (1)
If m = n or n + 1, we shall have to begin the series with 1 . Then
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1+ 1+ 1- 1- 1- 1
1+ 1- 1+ 1- 1- 1
1+ 1- 1- 1+ 1- 1
1- l+ l+ 1- 1- 1
1- 1+ 1- 1+ 1- 1

1+1 -1 -1 -1+1+1-1
1- 1+ 1- 1 -1 + 1- 1+ 1
1- 1- 1+ 1 -1 - 1+ 1+ 1
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we are left with m - 1 one's and n minus one's, and the partial sums
are now to be greater than m - n - 1 . Hence

f(m, n) = f(m - 1, n)

	

(m = n or n + 1) .

	

(2)
Finally if m < n, we are entitled to begin with either 1 or -1 and we
find similarly

f(m, n) = f(rn - 1, n) + f(m, n - 1)

	

(m < n) .

	

(3)
One can now easily verify by induction that the solution of equations
(1), (2), (3), with the boundary conditions f(1, 0) = f(0, n) = 1, is
given by (1), (4), and (5)

- + 1
AM,(m, n) =

n M
n

+
1 m+nCm

	

(m < n)

	

(4)

f(n + 1, n) = 2„C„/(n + 1) .

	

(5)
By taking m = n in (4), we obtain in particular the result earlier con-
jectured .

The problem can be given in a chess-board setting . Take a one-
dimensional board stretching to infinity to the right and bounded to
the left, and place a king at the left-hand end . Then f (n, n) is the
number of ways for the king to make 2n moves which return it to . its
starting point . The corresponding problem for a two-dimensional
board seems to be quite difficult if we permit the king its diagonal
moves ; however, if we restrict the king to horizontal and vertical
moves the answer is just (f(n, n) 12 .

A problem that further suggests itself is to place the king in the
middle of the board and ask for the number of ways for it to take a
trip to another designated square . In the one-dimensional case this
is conveniently formulated as follows : in how many ways can m one's
and n minus one's be arranged so that all partial sums are at least
m - n - a? If we let the desired number be g(m, n, a) then g(m, n,
0) = f(m, n), and for a <0 we have g(m, n, a) = 0 since the final sum
cannot be greater than m - n. We can get a recurrence formula by
splitting the acceptable arrangements into two subsets : those which
finish with 1 and those which finish with -1 . In the former case
we are left with m - 1 one's and n minus one's to be arranged with
partial sums of at least m - n - a, and there are g(m - 1, n, a - 1)
such arrangements . Similarly there are g(m, n - 1, a + 1) in the latter
group so that we have

g(m,n,a) =g(m-1, n, a-1)+g(m,n-1, a+1) .
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7.5

Setting a = 0, 1, 2 in succession we find

g(m, n, 1) = f(m, n + 1)
g('m,n,2)=f(m,n+2)-f(m-1,n+1)
g(m, n, 3) = f(m, n + 3) - 2f(m - 1, n + 2)

and the general formula is
la/2l

g(m, n, a)

	

n + a - i)
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CURIOSA

118 . Factorials and Sub-factorials . The number of permutations P ^ of n distinct
objects n at a time is P ^ = nl = 1 .2 .3 . . . n . Obviously, P„+, = (n + 1)P,,. The number
of permutations of n objects so that none of them occupies its original position is P R ' _
n![1 - 1/1 ! + 1/2! - 1/3! + 1 /41 - . . . + sometimes called sub factorial of n .
The first eight successive values of P,' are : P,' = 1, P,' = 0, P,' = 1, P s' = 2, P,' = 9,
P6 ' = 44, P,' = 265, P,' = 1854, Ps' = 14,833 . The recurrences p,i+ 1 ' = n(P,' + P.-l'),
and P„+1' = (n + 1)P"' + (-1)" +1 are known in the literature .

The following relationship seems to be new :

P^=(1+P')"=1+C,P'+C,P'z+C,P's+ . . .+C,.P'",

where C1 , C, . . . are the corresponding binomial coefficients and P'E stands for P,' .
For example, 4! = 1 + 4 .0 + 6 .1 + 4 .2 + 9; 5! = 1 + 5 .0 + 10.1 + 10.2 +

5 .9 + 44 = 120, etc .
S. GUTTMAN

119. The Dual of the above Formula. The formula
p" = (P' + 1)^

remains valid when P and P' are interchanged and the plus is changed to a minus, yielding
P„'=(P-1)" .

For example, P,'=9=4!-4.3!+6.2!-4.1!+1,
P5'=44=5!-5.41 +10.3!-10.21 +5.11 -1 .

J . GINSBURG
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