
SOME REMARKS ON CONNECTED SETS

P. Erdös

This note will consist of a few disconnected remarks on connected
sets .

i. Swingle2 raised the question whether the plane is the sum of c
disjoint biconnected sets . The answer as we shall show is affirmative .

First we construct a biconnected set A with a dispersion point x
such that any two points of A -x can be separated . (The first such
set was constructed by Wilder.-' Our construction will be very similar
to that of Burton Jones .)

Our biconnected set will contain the origin £1, at most one other
point on lines through the origin with irrational slopes, and no point
other than the origin on lines with rational slopes . Further it will
contain at least one point on every cut of the plane . It is easy to see
that such a set exists. Every cut of the plane contains a closed subset
which also cuts the plane, and the power of closed sets is known to
be c. Let us well order the closed cuts C1 , C2, . • . , C7 , . . . , f < SC R ,
where 11, is the least ordinal number of power c . We construct A as
follows: 0 belongs to A . We shall choose a point x,, on C7 and we
shall have A = Ux 7. We shall determine x 7 by transfinite induction .
Suppose we have already determined xa, 5< ,y, we determine x 7 as
follows : if C,, contains E) then x,=C. If C, does not contain C then
clearly C7 has to intersect c lines through 0. Therefore we can find a
point x.,EC,, such that (C, x,) has irrational slope and does not go
through any other point xa, S <'y . (We denote by (a, b) the line
through the points a and b.) This way we construct A . Clearly A is
biconnected. First of all A is connected since it intersects every cut of
the plane . Also any two points of A - C can be separated since the
two points x i and x 2, say, are on different irrational lines through the
origin, and a rational line, which of course does not intersect A -0,
will separate them . This completes the proof . The origin we call the
center of A .

Now we shall split the plane into the sum of c such disjoint sets
A,., -y < Q ., Sl . the smallest ordinal of power c . Let us well order the
points x7 of the plane and the closed cuts C,, of the plane. Our first
step is to select x1 as the center of A, and a suitable point of A, on C1 .
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(By suitable we mean that it does not lie on any line with rational
slope through x1.) Our second step is to select the first point which
has not yet been selected as center of A 2 , then select suitable points
on C1 and C2 for A 2 and on C2 for A 1. Suppose that this construction
has been already carried out for all 3 <y . Then the yth step consists
of the following construction : First we take the first x K which has not
yet been chosen as center of A, . Then we choose suitable points on
all the Ca, 6 :5 , y, for A, and suitable points on C, for all the A a , S <y .
It is easy to see that this construction can be carried out since before
the 7th step we have chosen less than c points x ;, and a cut C, if it
does not go through the origin intersects c lines through the origin .
(If the cut C goes through the origin of one or more of the A,'s then
of course we can choose the origin .) Thus the construction can be
carried out for all ordinals y < SQ. . Hence we get c sets A, where
UA, is the whole plane, A,,nA,,=O and the A, are all biconnected,
which completes the proof of the theorem .

A simple modification of this proof would give the following result :
Let m :5c be any cardinal number greater than 2, then the plane can
be expressed as the sum of m disjoint biconnected sets .'

ii . Let C be any connected set . Knaster and Kuratowski5 proved
that there exists a proper connected subset of C . (Single points, of
course, do not count as connected sets .) Their proof is very simple.
Let p E C be arbitrary . If C - p is connected our result is proved .
If C-p is not connected it can be written in the form U+ V where
U and V are separated . But then it is easy to see that both U+p and
V+p are connected .

It seems likely that the following result is true : every connected
set C contains a connected subset C' such that C- C' has power c .
I am unable to prove this. It is easy to see that if a set C does not
satisfy this conjecture it has to be both biconnected and widely con-
nected, thus must be rather pathological .

A. Stones proved that every connected set C has a connected sub-
set C' such that C- C' is infinite . Proof : First we can assume that
C- p is connected for every p E C, for if not then at least one of the
sets U+p or V+p has a complement of power c . (U and V were
defined in the previous paragraph .) Similarly for every sequence
Pi, p2, . . . , pup C- PI -P2	p, is connected . Choose Pi, p2,

' Swingle proved (ibid .) that the Euclidean n space is the sum of r biconnected
sets if r is any finite number not less than n+1, also that it is the sum of Ro bicon-
nected sets . He also showed that n-space is not the sum of n or less biconnected sets.

s Knaster-Kuratovski, Fund . Math . vol. 2 (1921) p . 206 .
1 Arthur Stone, oral communication .
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such that it will converge to a point PEC. Then C-E',p; is con-

nected. For if ,E,p; would separate C, a closed subset of it would
also separate C. But a closed subset of E,,p ; is finite, and so by as-
sumption can not separate C, and this completes the proof .

In this connection it might be of some interest to construct a con-
nected set A with the following properties : (1) no finite subset dis-
connects A, (2) every countable dense subset totally disconnects A .
For our construction we shall have to use the continuum hypothesis .

First we need the following lemma : Let S, and S2 be two countable
disjoint sets . S, is everywhere dense in the plane . Then there exist
countably many closed Jordan curves J, such that Jrf Sl is dense on
Jr, JrnSs = 0, and to any two points p and q there exists an r such
that J, separates p and q. The proof does not present any difficulties
and can be omitted .
And now to our construction .? First we well order the countable

dense subsets of the plane, D1, D2, . - . , D,,, . • . (their number is
clearly c=rt, ; the continuum hypothesis has been assumed) . Also we
well order all the closed connected cuts of the plane Ca, again clearly
S < S2, (it is well known that every cut of the plane contains a closed
connected cut) . We shall now construct our set A by transfinite in-
duction. Let A be any given countable dense set, put A CA . Our first
step is to define a countable subset P1 of C1. If A(1C1 is infinite we
put P, =0, if C,(1A is finite, we choose an arbitrary countably infinite
P1CC1 and put P1 CA. Consider next the smallest a such that
D,CA+P,. Put S I =D,, and S2=A+P,-D,. Then by our lemma
there exists a countable collection of closed Jordan curves J,1) such
that J, 1)(1D,, is dense on J,11 and J,1an©-FP,-D.=0 and any two
points p and q are separated by some J, 1 j. Now we make the condi-
tion that no point of any Pp (S>1) should lie on any J;' . Suppose we
carried out our construction for any y < S, we shall show that we can
carry it out for y=8 . Consider Ca ; if CanA+Es<6Pp is infinite, then
Pa =0. If C a(hA+E < 8P, is finite, then we choose a countably infinite
subset P a of C6, such that P a does not meet Ea<a ~, Jt. In other
words Pa does not meet any of countably many Jordan curves (we
have assumed the continuum hypothesis) . We have to prove that
such a choice of Pa is possible . By assumption (A+E < a Po)nC8 is
finite. For each of the Jordan curves J, (with A < S) JVV + p<a Pe
is dense on J,, therefore Ca(1J, is nowhere dense on Ca (for if not,
since Ca is closed, it would contain a portion of J, and therefore
Ca(\(A+Ep<a Ps) would be infinite, as A+Ep<a Ps is dense on Jr) .

7 Our construction will be similar to Miller's construction of a biconnected set
without a dispersion point. (Fund. Math . vol. 29 (1937) p . 123 .)
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Therefore Carl„< a E,'-, JJ is of first category on Ca, and thus there
are c points of C not belonging to Fla<a -, Jr ; therefore we can
choose an infinite P1CCa, PafE,,<a ;1 J, =0 without difficulty .
Next consider the smallest a such that Da CA+Epsa Ps and Da has
not yet been dealt with in any of the previous steps . We then con-
struct by our lemma countably many closed Jordan curves J, such
that D,r1JT is dense on J,, J,(l(A+E 5<a Pa -Da)=0, and any two
points p and q can be separated by some J, . This completes the Sth
step. Thus our construction can be carried out through all ordinals of
the second number class and will exhaust all the C .'s and D,'s . Con-
sider now the set A =A+Ea Pa. We claim that no finite set discon-
nects it and that any countable dense set totally disconnects it . First
of all every cut of the plane intersects our set in an infinite set, thus
no finite set can disconnect it . On the other hand let D . be some
countable dense set of A (clearly A is dense in the plane) . At some
step in our construction we had to deal with D a and it is clear that
A- 1-F,a Ps-Da is totally disconnected, since if p and q are any two
points there exists a J, separating them and (A+Es<a Pp-Da)r1Jr
= 0. q .e.d .
By a slight modification of Miller's$ construction of a biconnected

set without a dispersion point, we can construct a connected set A
dense in an indecomposable continuum, such that there exists an open
set 0 of the plane with O lA having power c and if B is any con-
nected subset of A then A - B is nowhere dense in O(1A . Clearly such
a set is biconnected and in fact it can be made to have no dispersion
point. By a further slight modification of Miller's construction we
can construct a biconnected set without a dispersion point such that
if A 1 , A2, . • • is any countable collection of connected subsets of A,
then Ui(A-A ;)OA or fl ;A. 0.

I can not decide the question whether there exists a connected set
such that the complement of every connected subset of it is nowhere
dense in it.

The following problems may be of some interest : Is it true that
every connected set contains a connected subset not homeomorphic
to it? (Points do not count as connected sets.) Every known con-
nected set (which is subset of a Euclidean space) contains at least
three different types of connected subsets . The number three can not
be improved as is shown by the arc.

If a topological space does not satisfy any separation axioms the
following example communicated to me by S. Eilenberg shows that
the above conjecture is not true : Let the space be the integers, the

8 Miller, ibid .
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closed sets are the finite sets. Every infinite set is connected and they
are clearly all homeomorphic .

Is it true that every connected set of dimension n contains a con-
nected subset of dimension n-1 ?

Is it true that every connected set of dimension greater than 1 con-
tains 2c connected subsets?

Perhaps the following theorem which A . Stone and I proved might
be of some interest : Let A be a totally disconnected set of power m
(in a separable space), then if m is not the sum of countably many
smaller cardinals, A can be written as the sum of two separated sets
of power m . If m is the sum of No smaller cardinals the theorem is in
general false .
PROOF . Suppose first m 76EiI mk, mk <m. Denote by A' the set of

those points of A for which every neighborhood contains m points
of A. Now A -A' has power less than m, since by Lindelöf's theo-
rem A -A' can be covered by countably many open sets each of
which contains less than m points, thus A -A' also contains less
than m points. Since A is totally disconnected A "= U+ V, where
U and V are open-closed sets . Thus both of them have power m.
Let pEA -A', the distance of p from U be f(p), from V, (A (p), pE Ua
if f(p)5acfi(p), PEVa if f(p) >_a4r(p) . Since the power of A -A' is
less than m :5c there exists an a such that U ['\ Va =O. But then
U+ Ua and V+ Va are two separated sets of power m whose sum is A ;
this completes the proof.

If m =Ek-1 mk, mk<m, we define A as follows : A contains mk
points in (I/k, 1/k+1), 0 belongs to A . Clearly A is totally discon-
nected (its power is less than c, since c is not the sum of m smaller
cardinals). Obviously A is not the sum of two separated sets of
power m .

PURDUE UNIVERSITY
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