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It is well known that there exist continuous functions whose Lagrange inter-
polation polynomials taken at the roots of the Tchebycheff polynomials T„ (x)
diverge everywhere in (-1, + 1) .' On the other hand a few years ago S . Bern-
stein proved the following result' : Let f(x) be any continuous function ; then to
every c > 0 there exists a sequence of polynomials ~p„(x) where ~0 ,(x) is of degree
n - 1 and it coincides with f(x) at, at least n - cn roots of T, (x) and gyp, (x) -p
f( .c) uniformly in (-1, + 1) .

Fejér proved the following theorem' : Let the fundamental points of the inter-
polation be a normal 4 point group

xln
xi2)

	

x (
22)

	 ;

then for every continuous f (x) there exists a sequence of polynomials ~p,(x) of
degree _<_ 2n - 1 such that

	

= f(xin) ), i = 1, 2, • . . n and ~p„(x) -f(x)

uniformly in (- 1, + 1) . In the present paper we are going to prove the follow-
ing more general
THEOREM 1 . Let the point group be such that the fundamental functions lk" (x)

are uniformly bounded in (- 1, + 1) . Then to every continuous function f(x) and
c > 0 there exists a sequence of polynomials p,,(x), such that, 1) the degree of ~0,,(x)
is =< n(1 + c), 2) ~o,(xk"') = f(x;" ) i = 1, 2 . . . n, 3) ~o,(x) f(x) uniformly in
( - 1, + 1) .
Theorem 1 generalizes the result of Fejér in two directions ; first the point

group is more general since it can be shown 5 that the fundamental functions are
uniformly bounded for normal point groups, and secondly the degree of p.(x) is
lowered from 2n - 1 to n(1 + c) .

Theorem 1 does not directly generalize the result of S . Bernstein, but we can
prove the following
THEOREM 2 . Let the x,( ' ) be such that the fundamental functions are uniformly

bounded in (-1, + 1) ; then to every continuous function f (x) there exists a sequence
of polynomials cp,(x) of degree <= n. - 1 which coincides with f(x) at, at least n-en
points xi'0 and cpn (x) -> f(x)

' G . Grünwald, Annals of Math . Vol . 37, (1936), p . 908-918 .
2 S. Bernstein, Comptes Rendus de l'Acad . des Sciences Vol .
3 L . Fejér, Amer. Math . Monthly Vol . 41 p . 12 .
4 Ibid .
s Fejér proves this only for the so called strongly normal point groups (ibid) . The

proof for normal point groups is much more complicated and we do not give it here .
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We are not going to give a proof of Theorem 2 .
The following problem is due to Fejér : Let the x (j " ) be the equidistant abscissas

that is xi" _ - 1 + 2z - I , i = l, 2,

	

n. The question is, does there exist
n

to every continuous f(x) a sequence of polynomials ~, n (x) of degree < 2n such
that ~p n (xi n) ) = f(x i( 77) ) and <pn(x) -> f(x) . In other words, does his result proved
for the normal point groups also hold for the equidistant point group . We
prove the following
THEOREM 3 . To every continuous function f (x) and to every c there exists a

sequence of polynomials („(x) of degree <_
2
n(1 +c) such, that p n (x~ n) ) = f(xi n) ) and

~o n (x)

	

f (x) uniformly in (-1, 1), and it can be shown that the constant 2 is the best

possible .
Throughout this paper the c's denote absolute constants not necessarily the

same . If there is no danger of confusion we will omit the upper index n in
(n))x; , lk ( :r) etc .
To prove Theorem 1 we need two lemmas .
LEMMA l . Let the point group be such that the fundamental functions are uni-

formly bounded in

	

1) and put cos d; = xi, x1 < x2 <

	

< xn, 01 > d2 >
. . . > ?9 n ; then

6
> c-n

PROOF. Let I l i (x) I < D, i = 1, 2,

	

n. By a well known theorem of S .
Bernstein' d/d?Y h(cos 0) 1 -<_ nD and since l ;(x i ) = 1, l ;(x itl ) = 0, we have finally

?Y i

	

>
1
Dn

LEMMA 2. Let -I < y < 1, cos 0 = y . Then there exists a polynomial
h ( ') (x) of degree <_ 2m such that h, ( " ) (y) = 1, 1 h,(x) I < c, -1 _< x < I and for

0-Bo > A
m

h'm) (cos Bo) I < c, min C1,	1	 .
m2 (B - 0 0 ) 2

Denote by Xi m) and Xi+1 the roots of T-(x) for which X~n' < y < XIt is
easy to see that

a If the fundamental functions are uniformly bounded we have

Cl < iii - i/g+1 < C2
n

	

n

But the upper estimate is not needed here . (Erdös-Turán, Annals of Math. Vol . 39 (1940)
p. 706-707 .)

7 S . Bernstein, Belg . Mém. 1912 p . 19 .
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L im) (y) + Li+l(y) > 1,
5

where Lzm) (y) denotes the fundamental polynomials belonging to the roots of
Without loss of generality we may assume Li (y) > z . It is well known

that I Li ""(x) I <_ A/2, -1 < x < 1 . 9 Thus since 6i - Bi+1 =

	

(cos 0, _ Xi)
M

our lemma will be proved if we can show that for I Bi - Bo > A
M

73ut

him) (cos Bo) I < -	4

	

<

	

.
m2(e, - Bo) 2

	

A 2

PROOF of Theorem 1 . Let >G"_1 (x) be a polynomial of degree n-t such that

Put f(x i) - iGn_1(xi) = Ei . Consider the polynomial of degree <= n(1 + c) such
that

Clearly án_1 (x i ) = f (x i ), i = 1, 2 . . . n . We shall prove that "_ 1(x)

	

f (x)
uniformly in (-1, 1) . It suffices to show that

Now
n

1 9(x) 1 _

where I are cos (x + k,.) -

hy"(

	

) I =

	

( nz)( )/ (m)(y)
I2 <

ccos Bo

	

L i xo Li

	

A2
.

f(x) - 4,-1(x)

<,on-,(x) = Y,-1(x) + Y~ Eili(x)hx') (x),
i=1

n
(m)

Ei ~(x)j)x,: (x)i=1

P . ERDÖS

n

I g(x) I < CE

	

1 hx(i) (x) 1 = CE

	

I h x( j" ) ( x) Ii=1

	

x i ?

CE

	

I hx i ) (x) I = CE (,7

	

1:2)
xi>x

r

<E,-1 <x<1 .

are cos x I > (rc)/n . Thus by Lemma 2

z1<2 C32~<c, .
r rC

?n =
~2

] .

< CE,

	

-1 _<_ x <_ 1 .

Thus we only have to show that [:1 + Y2 < c l . By Lemma 1,

1 <

	

I hx+k, (x) ,

Similarly we obtain Z2 < C2 , which completes the proof of Theorem 1

8 Erdös-Turán, Annals of Math . Vol . 41, (1941) p . 529, Lemma IV .
9 L . Fejér, Mathematische Annalen, Vol . 106, (1932) p . 5 .
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Theorem 1 does not give a necessary and sufficient condition for the existence
of a sequence of polynomials Crn(x) of degree -<_ n(1 + c) with ynn(x j ) = f(x j ) and
,p,,(x) - f(x) uniformly in (-1, 1) . To obtain such a condition let x j( " ) be a
point group, put cos 0j" ) = x j( " ) and denote by N„ (a, b) the number of the d i
in (a, b), We have the following :
THEOREM 4 . A necessary and sufficient condition that to every continuous func-
tion f(x) and to every c > 0 there exists a sequence of polynomials (r_(x) of degree
<_ n (1 + c) such that ~,,(x j ) = f (x v ) and (p n(x) ---~.f(x) uniformly in (-1, 1) is that
if n (bn - a n )

	

, 0 <_ a n < b n < ,r
Nn (a.n, bn) < 1(1) lim sup . -

	

- -

	

- and Inn inf . (?Yj - ~z+l)n > 0, (nom ~ i arbitrary)
n(b n - an)

	

-Ir

Condition (1) states that the number of z9 v in (an , bn) can not be much greater than the
number of roots of Tjx) in (a n , bn) . If the fundamental functions l1(x) are uni-
formly bounded (1) is satisfied, for then we have

lim N,(a., bn) = 1

	

n(b n - an) -~ 10

. n(bn - a n )
,

We do not give the proof of Theorem 1, but the following proof of Theorem 3
can by a simple modification be applied to it .
PROOF of Theorem 3 . Here the fundamental points are

x~ n) _ - 1 + 2i - 1

First we prove the existence for every n and c > 0 of m =
r
n(1 + c) points .

i = 1, 2, n such that (1) the x n occur among the y l~'" ) (11) the fun-
damental functions Lk (x), k = 1, 2, • m are uniformly bounded in (-1, 1)
(The Lr(x) are the fundamental functions belonging to the y .(i '") ) . Having con-
structed the yz' n satisfying (1) and (11) we immediately obtain Theorem 3 by
applying Theorem 1 .

To construct the y j " we first remark that by putting

we obtain by a simple calculation

1 0 Erdös-Turán, ibid ., p . 519 .

cosz9,;=-1-}
2i -

1,

	

i=1,2,- . . n
n

n

7r
m

ow we construct a sequence y i('" ) , i = 1, 2, • - m such that (1) the xz ") occur

among the y,( ' ) ( 2) put cos 0, = y, then 0ti = 2i	 - I 7r

2 +
d, where Z~ 1 d, is

m

	

~n

uniformly bounded 3

	

(2) and (3) insure that the yj are "veryO 0y - 8~+1 ~ dm .

nearly" the roots of T..(x) .
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We construct the y2 as follows : Suppose y, < y2 < . . . < yi-1 are already
constructed . We further make the hypothesis that if 0, (cos 0, = x, .) is the

greatest ,7 < B,-1 then Bá_1 - 1Y, . > 7f

	

If 3~';=i d, < 0 we choose for yj either4mm

the least x, >

	

47r

	

2r
yz 1 , or if 0, < B.,_1 - - we put B, = Oz-1 - - . Thus Bi doesm

	

m

not come nearer than 4m to the greatest 0 < 8i . If

	

d; > 0, yj = x, if

01 > Bi-1

	

2m and Bi_i - 4m otherwise. Thus in any case if 1Y ; is the greatest

< B2 then 6i - z9 ; > 4m . In this we can construct y, , y2 ,

	

y- . (1) and

(3) are clearly satisfied and it is quite immediate that (2) is also satisfied. Now
we have to show that the yti's satisfying (1), (2), and (3) also satisfy (1) and (II) .
(1) is clearly satisfied, the proof that (11) is satisfied is slightly more difficult .
Denote by z, , z2 , zm the roots of T.m (x) and by L;; ( .r) the fundamental func-
tions belonging to the z ; . From (2) and (3) it follows by a simple calculation
that

(2)

	

c,co'(yk) < Tn,(zk) < C2WI(yk),

	

W(x) _

	

- ya)
á=1

where c, and C2 are independent of m and k . Denote

max Lk.(x) = Ak ,

	

max L,k(x) = B,
-15x<_1

	

-1<x<,

Then again from (2) and (3) by a simple calculation [using (2)]

(3)

		

C3 > Ak B < C4 .
k

We know that"

(4)

	

Bk <

Thus from (3) and (4) we obtain (3), and this completes the proof of Theorem 3 .
To obtain the second part of Theorem 3 we first have to prove

LEMMA 3 . Let m = [(7r/2)n(I - e) ], e > 0 fixed, independent of m and n, n
odd. Let <p-(x) be a polynomial of degree m such that ip,,,(0) = I and
gyp,,,(-1 +- ((2i - 1) /n)) = 0, i = 1, 2, • • • [(n - 1)/2], [(n +- 3) /2] . . . n .
Then

max I com(x) I > Cl ,

	

C1 = Cl(E) > 1 .
-1<x<1

PROOF. We use the following lemma due to M . Riesz" : Let <p . (x) be a poly-

11 L . Fejér, see footnote 9 .
12 M. Riesz, Jahresbericht der Deutschen Math . Vereinigung, (1915), p . 354-368 .
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nomial of degree m, it assumes its absolute maximum in (-1, 1) at the point
xo = cos tgo . Let xi = cos i9i be the nearest root of p,,, (x) in (-1, + 1) then

- 00

	

2m *

It immediately follows from this lemma that if xi and xi+1 are the nearest roots
including xo , then we have

T
M

Put now cos 1%i = - 1 + (2i - 1)/ia . A simple calculation shows that there
exists a constant c2 = c2(e) such that if -c2 <= xi < xi+1 <_ c2 then

. q

	

.,~

	

(1

	

2) 7r
V2

	

t+l < M

Hence p„t (x) can not assume its absolute maximum for -c 2 <= x <= c2 except if

xn-1 < x < xn+3
2

	

2
(i . e. in the neighborhood of 0)

Consider now a polynomial li .(x) with highest coefficient the same as that of
~r ,(x) whose roots are defined as follows : Let -c2 < z ; < c2 then z i _ (1 + 5)x i
„-here S is chosen so small that

1 - e

Oi - 0i+1 < m
4

7f

	

(cos 0i = zi)

The other roots of h m(x) coincide with those of ~o- (x) . Clearly the degree of
hm (x) is m. Define

g(x) _ (x + 4m)(x 4m)hm(x)

By the lemma of M. Riesz g(x) does not assume its absolute maximum
in (-c2 , c2) . It follows from the inequality of the arithmetic and geometric
means that

(5)

	

g(x) I < I ~pm(x) I for C2(1 + S)

	

x < 1

Denote by A(c2) the number of x i in (-c2 , +C2) . We evidently have A(c2) >

c3n . Thus

(6)

	

I g(0) I > w-(0) I (1 + S) ` 3n 16má > ~0, (0)c, = ci(cl > 1)

But since g(x) assumes its absolute maximum in (-1, 1) for some I xo >
C2(1 + S) we have by (5) and (6)



336

	

r. ERDös

~o_(xo) I > I g(zo) I > cl q .e .d .

Let now n, , 112 , • • • be an infinite sequence of odd integers, which tend to
infinity sufficiently quickly . We define a polynomial 4, i(x) as follows

I + 2j - 11 = 0,

	

i° < i,

	

j

	

1 2 n ,

	

.) < n,,n,.

'Pi(0) = 1,

	

14,i (x) I < 2,

	

-1 <_ x <_ 1 .

From the approximation theorem of Weierstrass it follows that such a Vi(x)
exists . Consider now the continuous function

f(x) =
k

	

2x) .

If the second part of Theorem 3 would not be true, we could find a sequence of
polynomials ~ri(x) of degree <ni(7r/2)(1 - E) such that ip i(- I + ((2j - 1)/ni)) _
f[1 + ((2j - 1)/n i) I and pi(x) , f(x) uniformly in (-1, 1) . For k > i

Thus ,pi(x) coincides with

~G> (x) = g(x)
=1 21

at the points -I + ((2j - 1)/n . i), j X ((1 + n i)/2) .
Let now ni tend to infinity so quickly that n i is greater than the degree of

g(x) . Then ~oi(x) can be written as

(Fi(x) = w~" (x) + ~'?' (x),

where pa l ' = g(x), and pz~'(x) is of degree < (( 7r/2) - cjt? 2 and pi (- 1 {
((2j - 1)/ni)) = 0,j

	

((I + ni)/2),j < n i , also ~o2 2) (0) _ Ek>i((Vlk(0))/2 k ) _
(1/2'-') . Thus by lemma 3

max I ~pi(x) I > max j p i(2)	 2(x) I - 2 > ci > C3 2
(CZ and c3 are> I

-1<x<1

	

-1<x<1

	

2-1

if n i tends to infinity sufficiently quickly . Hence ~pi(x) can not converge uni-
formly to f(x), and this completes the proof of Theorem 3 .

By a more complicated argument we could prove that a point xo exists such
that ~o,(xo) diverges . We give only the sketch of the proof . Since
max_,<x<, ~ojx) I > (1 + 6) n " it follows from a theorem of Remes 13 that there
exists in (-1, 1) a set of measure > c = c(S) such that on this set I ~cni (x) I >
(1 + (S/2)) n " . Then, it follows easily that there exist a point x o with
lim sup ip„" (xo) _ Co .

I kC-1 +
2j

az
11

= 0,
j

	

1 + ni
2

13 E . Remes, Sur une propriété extremale des polynomes de Tchebycheff. Comm.	de l'Insti-
tut des Sciences etc . Kharkov, (1936) série 4, XIII fase . 1, p . 93-95 .
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By the same method we can prove the following :
x1I>

THEOREM 5 . Let x( I) x~~ be a point group and put cos (0(" ) _ .z,(" ) . Suppose

alim inf n(z9 i n - 0 ,~ +i) =
d

, (n

	

, i arbitrary)

Then to every continuous f (x) and constant c > 0 there exists a sequence of poly-
nomials ~c,(x) of degree <d(1 + c)nn such that lrn(x

(j " ) = f(x " ) and pn(x) f(x)
uniformly in (-1, 1) .
The constant d I of Theorem 5 is not best possible . We can obtain the best

possible constant dI as follows : Let a" and bn be two arbitrary sequences of real
numbers, such that 0 <_ a" < b„ < 7r, n(bn - an)

	

Then if d < oc

lim sup
Nn(an , b") _ dI
n(bn - a")

Lemma 3 would not suffice for the proof of Theorem 5 . Here we need
LEMMA 4 . Let ~n,(x) be a polynomial of degree n, "(0) = 1 . Let V/(n) be any

function of n tending to infinity together with, n and, let c I be a constant independent
of n . Then if ~,L(x) is such that for every cI < A < ~(n) the number of roots of
~„(cos z9) in ((tr/2) - (A/n), (7r/2) + (A/n)) is greater than [((1 + c2)2)/7r] we
have max_,<_,<I wn(x)

	

oo . Our condition means that the number of roots of
„(x1 in the neighborhood of O is substantially larger than the number of roots of
T,(x) . The proof of Lemma 4 is similar, but more complicated than the proof of
Lemma 3 .

UNIVERSITY OF PENNSYLVANIA
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