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ON FAMILIES OF MUTUALLY EXCLUSIVE SETS

By P. Erpds anp A, Tanski
(Received Auguat 11, 1942)

this paper we shall be conecerned with a éertain particular problem from
general theary of sets, namely with the problem of the existence of families
tually exclusive sets with a maximal power. It will turn sut—in a rather
pected way—that the solution of these problems essentially involves the
gtion. of the so-called “inaccessible numbers.” In this connection we shall
some general remarks regarding inaccessible numbers in the last section
aur paper.

ﬁl FORMULATION OF THE PROBLEM. TERMINOLOGY!

The problem in which we are interested can be stated as follows: Is it true
that every field & of sets contains a family of mutually exelusive sets with a

pardinal number of any other family $ of mutually exclusive sets contained in §.
- By a field of sets we understand here as usual a family § of sets which to-
Cgether with every two sets X and 17 contains also their union X U ¥ and their
.&Hﬁi‘enne X — YV ii.e the set of those elements of X which do not belong to 17)
ne its elements, A family 6 iz called a family of mutually exelusive sets

A similar problem can be Tormulated Tor other families e.g. for rings of sets,
ie. for families which together with any two sets X and ¥ also contain their
wmion X U Y and their intersection X M ¥ among their elements.  We obtain
an especially interesting partieular case of this problem by referring it to the
mng of open sets of a topological space S with power g

It turns out that the solotion of our problem is in general positive; however
:;t. is negative in certain exceptional cases.  To examine the problem thoroughly
Sy must first subject it to oocertgin transformation by using some notions from
Cthe arithmetie of cardinal numbers,
~ We shall denote the cardinal number (or power) of aset 8 by ¢(S),

A pardingl number n is called 4 limit number if n # 0 and if among the cardinal
‘numbers r < 1 there is no largest one.  The number n is called singular if it
';:_i:_'nn be expressed as a sum of less than n numbers m, each of which is smaller

t Far the concepis and resaltz of the general theory of sets, which are applied in this
‘paper, gee Hausdorfi, Mengenlehre: however ss regards the convept of an inaccessible
‘number ef, Tarski, Uber unerreichbare Kardinalzahlen, Fund, Math. Vol, 30 (1938) p. 65-89.
For the voncepts and resalts from the theory of partially ordered sets, lattices, Boolean
wlgebras, ete,, see (. Birkhoff, Lattice theory. For topologieal econcepts see Kuratowski,
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If such a representation is impossible the number n is called regular, Regulay
limit numbers are also referred to as “insceessible’ or “weakly inaccessible!™
nimbers.

Asis well known, every limit number is an infinite number, and every singular
infinite number is a limit number. The problem of the existence of regular
limit numbers > ¥ is thus far unsolved, and presumably will never be solved
on the basis of the axiom systems upon which the general theory of sets is con-
strocted at present. At any rate the existence of the numbers in question can-
not be derived from these axiom systems provided they are consistent; on the
other hand it seems highly improbable that these svstems cease to be consistent
il we enrich them by adding new existentisl axioms which secure the existence
of the inaveessible numbers,

i being a family of sets let us denote by 8(F) the smallest cardinal number
which is >e(@} for every family ¢ of mutually exclusive sets contained in F.
If o %) is not a limit number, the family # obviously contains a subfamily & of
mutually exclusive sets with & maximal power. Thus our problem reduces
now to the following one:

n being a limit number is it true that for every field (or rng) of sets we havi
b(F) = n?

We shall show that the solution of this problem depends on the praperties of
the number n: the answer i3 affimative if n either = ®; or is a regular number
{Theorem 1), is negative only for the hypothetical regular Hmit numbers > ¥,
(Theorem 2). I in particular the problem is applied to the ring of all open set2
of & topologieal space” with ¢(S) = 2% then its positive solution proves to be
pquivalent with the statement that there is no inaccessible number > Ny and
= 2% (Corollary 3).

In order to formulate the positive part of our result in as peneral form as
possible, we shall use the terminology of partially ordered sets.

Let & be an arbitrary set which is partially ordered by the binary relation =,
If 2 is an element of 8, we write S{z) to denote the partially ordered set of
all elements y € S which are = », The svmbol A will denote & null element
of 8, Le. an element @ such that ¢ = o for every y e 8. Two elements y and 2
of § are called disjoint if ¥ # A,z # A and if for every z ¢ S the formulas
+ = yoand e = zimply # = A. We do nol here assume that the partially or-
dered set necessurily contains a null element.  ITn fact without loss of generality
we eould confine ourselves to the consideration of sets which do not contain such
elements; and in thiz ease we conld simply say that two elements y and z are
called disjoint if there is no element r such that » = yand » = 2.

A subset T of a partially ordered set § such that every element of T is = A
and every two different elements of T are digjoint is called a set of mutually

! By topological spaces we mean hore the spaces with the elosure operation satisfying the
axioms I-T11 of Kurntowski (op. cit. p. 771 However the space which will be constructed
in the proof of Corollary 2 will alzo satisefy axiom IV (normality) (pp. 85-101, ibid.).
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lusive elements. Agnin we denote by b(Z) the smallest cardinal number
e(T) for every T C 8 of sets of mutually exclusive elements; moreover we
for every element e T

b{z) = d(E(x))

In view of this formula b eonstitutes an example of a function [ which corre-
Lf tes with every element of a partially ordered sef o cardinal number f(z).  This
etion is obviously ineressing, for we have

blx) = by

|$nr every two elements o and y such that * = . Many other examples of this
d of increpsing functions are also known; e.g. the funetion ¢ defined for every
4 e M by the formula

elx) = c(S(x)).

5till another example is constituted by the function g defined in the following
wayv: for every x e S, glr) is the smallest cardinal number n such that there is
whasis B of the set S(x) with power e{8) = n; by a basis we here understand a
cget B € S{x) such that every element of S{x) is the union (the least upper
liound) of elements of B.  To every increasing function [ of the kind considered
 there corresponds a certain notion of hemogeneity of partially ordered sets.  We
“may penerally that an element r of a partially ordered set S is homogeneous
with respect to an increasing function f, which is defined over the set S and
assumes eardinal numbers as values, or simply that « is ~homogeneous, if @ = A
and if f{x) = fiy) for every element y e S such that y = A andy = =. If the
~#et S contains & unit element u ie. an element = such that y = r for every
o e 81, and if u is f~homogeneous, the whale set § is called fhomogeneous,

SOLUTION OF THE PROBLEM

We shall begin with two simple lemmas concerning Fhomogeneous elements

Lesa 1. Let S be a portiolly ordered sel, and I an inereazing function which
correlates with every element ¥ e 8 a cardinal wumber fiz).  Then for coery element
= A there exists an fhomogeneous clement y = x.

Proor, Consider all the cardinal numbers f(y) correlated with the clements
gy =m,y # A, Among these cardinal numbers there certainly exists o small-
est, say 1 (by the well ordering theorem}; and it is easily seen that every
element such that

y=z  fly)=mn

is f~homogeneous,

Lesua 2. Under the hypothesis of LeyMma 1, dhere exeats o set T C S of mu-
tially exclusive f~homogeneous elements such that no element of S is disjoind with
all elements of T.
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Proor. It can be easily shown (e.g. with the help of well ordering) that there
exists & maximal set 7' of mutually exclusive f~homogeneous elements of 8;
i, aset T of mutually exelusive f-homogeneous elements of 8 which is nﬁf
‘a proper subset of any other set with the same property. Hence by Lumma I
it follows that no element of S—whether homogeneous or not—is disjoint with
every element of T, q.e.d.

Az an immediate consequence of Lesvya 2 we obtain the following théorem
which, however, will not be applied in this paper.

Let B bea Boolean algebra, and f an inereasing furction which correlates with
every element ¢ of B o cardingl nuember f(e).  Then every element of B—and, i
particular, the wntl element—can be represented as the undon of midually exclusive
f-homogeneous elements of B; and therefore B is tsomorphie with a direct sum of
Shomogeneous Boolean algebras,

The following three lemmas will lead us divectly to Tusores 1, which is one
of the main results of this paper.

Lesmma 3. If 8 is a partially ordeved set and 8(S) s a limit number, then 8
eontaing a d-homogeneous element o with o(z) = b(S8).

Proor. Assume that, on the contrary, S dees not contain a d-homogeneous
element & with d{z) = b{S). By applying Lemus 2 to the function [ = b
we obtain a set T © 8 of mutually exclusive b-homogeneous elements, with the
property that no element of § i= digjoint with every element of T. According
to our assumption we have:

{1) bit) = b(8) for every element {el';
moreover, the definition of b implies:

(2) e{T) < b( 8}

Sinee d(S) is an infinite eardinal number, we hove

(3) (b(8)) = b(8);

henee, by (1) and (2), we obiain:

(4) 2 b(t) = o(T)d(8) = ((S) = B(8).

We want now to show that in the latter formuls * = may be replaced by ‘=",
In faet, consider an arbitrary set U7 € & of mutually exclusive elements.  As
was mentioned before, no element of {7 can be disjoint with every element of T,
Henee (by using the axiom of ehoiee) we can correlate with every element u e U/
first an element ¢, ¢ T, and then an element v,e S such that .= A, 00 = 1w,
and v, = .. Let V be the set of all these elements o, . It can easily be seen
that the correspondence hetween the elements of [T and those of V is one-to-one,
and that therefore the sets [F and ¥ have the same power. TIf, on the other
hand, we denote by ¥V fwhere {5 a given element of 1) the set of all those
elements v, which are = {, wesee at onee that Vis the union of all these sets 17, ; ,

v=Uw,
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V) < bty for every teT.

¢(U) = (V) S 2 b(t).
¢ the latter formula holds for every set 7 O 8 of mutually exclusive elements,
nfer from the definition of b that either
b(S) = ZT a(l)
b(S) is the cardinal number which immediately follows 2 .r b(t). How-

. the second alternative is excluded, 5(S) being by hypothesis a limit num-
vand therefore (5) holds.  The formulas (4) and {5} give al once:

‘g b{f) = b(S).

From (1), (2), (3), and (6) it follows that for every cardinal number r < b(S)
there exists an element { ¢ T such that ¢ < b(t). Forif we had:

B8 > 1 = o) forewery tel

we should have, by (1), (2), and (3),

2, 2 = o(Dx < (S = b(S)

h obviously contradiets (6). Hence we can easily construct (with the help

well ordering theorem) a well ordered transfinite sequence of elements
et nrg fey + oo & 1 of an ordinal type 7 which satisfy the following conditions:

E. b(te) = B(S).

Consider an arbitrary ordinal number ¢ < 7. By (7) we have
bits) < bifen)

ee by virtue of the definition of b, there exists a set W © S(teqr) of mutually
sive clements with power:

E{WE} = h‘{té]‘ for every £< 7.
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we easily see that W ois a set of mutually exclusive elements of &8, the
sets Wy, Wy, -oo ) We, - - being mutually exclisive,. We have MoIeover,
by (8}, (9), and (10), |

(W) = b(8),

In this way we have arrived at a contradiction; for 5(S) is by definition
> o(X) for every set X S of mutually exclusive elements.  Thus we must e
jeet our original supposition, and assume that S has a d-homogeneous element,
x with d{z) = b(S), q.e.d.

Lemma 4 If & d8 a dhomogenesus element of @ partially ordered set 8, then
blx) = M.

Proor. Assume blz) = ¥y. By the definition of b there exist two disjoint.
elements &y and o which are = 2. Sinee 1 is b-homogeneous, we have further
blra) = M, and therefore there exist two disjoint elements, x;, and s o which
are = @ = r. By continuing this procedure indefinitely we obiain (with the
help of the axiom of choice) an infinite sequence of mutually exclusive elements
Xy gy Fray, +or which are all = »; but this clearly contradiets our assump-
tion. Henee d(x) # My, ged

Leswa 5. If x is a bhomogeneous element of a portially ordered set, then b(z)
is not a singular fmit number,

Proor.  Assume, on the contrary, that ble) is a singular limit number, Thus
bix) van be represented in the form:

(11) b) = X m

where (" is a certain set of power < b(z), and every number m; is also < b(z).
Sines o(€') < Bx), we can correlate with every element © e ¢’ an element o, = =
in such a way that any two elements 2, and ry, (¢, # 4) are disjoint. The
element &+ being d-homogeneous, we have for every element z, ;

blad) = blx) > mis
conseruently we can correlate with every element x; a set T; © S(z;) of mutually
exelusive elements with power ¢(T5) = m;.  Henece in view of (11} it is easily
scen that the set T defined by means of the formula
T = U T,
LR A

is u set of mutually exclusive elements of S{r) with power

Ty = {%i‘m. = bx).

Hut this is impossible, sinee dlr) must be by definition > (7).  Thus we must
assume that dlr) is not a singular limit number; o.e.d,

Lemmas 3, 4, and 5 imply directly

Turonem 1. If n s either egual to Wy or i a singular limil number then there
i no partially ordered sel 8 such that 5(8) = n.
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Remark. Theorem 1 applies direetly to various special partially ordered
ts, e.g,, to lattices or Boolean algebras, Tt can alzo be applied to anarbitrary
nily & of sets, for every sueh family is partially ordered by the relation of
nelugion . 1t should be noticed, however, that two sets of a family § which
e disjoint from the point of view of the theory of partially ordered sets are not
vessarily disjoint in the usual set-theoretic meaning.  On the other hand, it
easily seen that the two meanings of the notion of disjointness eoineide iT the
family & containg the empty set among its elements and if, with any two sets
X and ¥ belonging to § their intersection X 1 ¥V also belongs to §. Thus
T.’neﬂrem 1 applies literally to every Held of sete, and even to every ring of sets
which eontains the empty set, e.g., to the ring of all open sets of a topological
space; and it can be very easily shown that the theorem holds for an arbitrary
ring of sets, even il it does not gontain the empty et (for in this case the ring
does not contain any two sets which ave disjoint in the set-theoretic sense).
- Tueorem 2. If 1 is o regular cardinal number > 8o, then for overy set S of
pinver 1 there extsts a field & of subsets of 8 auch that e(F) = 2(F) = !
~ Proor. We could assume that nis a limit number, for nthermw the proof
presents no difficulty; however, no use will be made here of this assumption,
~ We shall first prove the theorem for a particular set N of power n, which will
he defined as follows.  Let us write for every ordinal number a:

(1) cie) = the power of the set of all ordinal numbers £ < & By the well-
ordering theorem there exists an ordinal number » such that

(2) civ) = n, while e{f) < nfor every number § <

(3). N = the set of all transfinite sequences o of ordinal numbers a3, o, -+,
which satisfy the following conditions:

(i) o = £ for every number § < g

{ii) there are only finitely many numbers £ < » such that o & 0,

Sinee

@Woan=n"+n+ o tut & < Ry,
it is easily seen from (1), (2}, and (3} that N has in fact power n,

We are now going {o correlate to every number £ < » a family 5 of subsets X
af N s0 as to satisfy the following conditions:

(5). H: is a family of mutually exclusive sets, and U X = N

Iuig
(6). e(e) = elf + 1) < n
(7). if &, &, -+ L. is any finite sequence of distinet ordinal numbers: << v,
and X, Xy, ---, X, any finite sequence of sets such that X, 9,

NeeBy, -+, X, ¢ By, , then the intersection X; M --- M X, is not empty.
To obtain such families $: we put:

{8). Ni, = theset of all sequencese e Nsuch that oy = no 9 S & < »

(9). $: = the [amily of all sets Ngy, Ney - Ngp--+ where 5 = & < »,

The proof that the families §; thus defined satisfy the conditions (5), (6),
and (7} does not present any difficulties.

Finally we construet the Geld § by putting

(n). 5 ?{'U L
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{(11). % = the smallest field of sets which eontains all the sets of £ u;fi‘é.- :
other words,: § = the family of all sets which are finite unions of finite intet=
sections of gets X e § and their complements N — X, i

We shall prove that § satisfies the eonclusion of our theorem, If nis an in-
finite pumber, it is easily seen from (2), (6), and (10} that the family 5y
power 11, Hence by (4) and (11) it follows that § has also power 1,  Furthe
more, (2), (5), (6), (10), and (11} imply that, for every number ¢ < n, i does
contain ¢ mutoally exelusive sets. Hence we have :

(12), ofif) = n = d{{F). .1

It remains to show that every family & € ¥ of mutually exclusive sets his 8
power <mn, We shall show it first for families of a rather special character,

Let us agree to say that a set X e §§ is of the I'" order (where | is any positive
integer) if it is not empty and can be represented as an intersection of I diffevent
sets of the family ®. We are going to establish eertain simple properties of
sets of the ™ order.

(13). Every =et X of the [

order can be represented uniguely in the form
X=X Nn---Nx

where X, e 5, , -+ Xy e By, andt < b <vforl S < b £ 1L

In fact, the possibility of such a representation follows directly from the
definition of the sets of the I"" order; two different sets X, and X, cannot belong
to the same family $, for by (5) the set ¥ < X; M X; would be then empty,
Assume that the set X has two representations of this kind:

QO Nl (o SO, W [, )

where X; e ®y, , YieH, .8 < te < wyand g <m < ovforl =4 <k =L
I these representations arve diferent, at least one of the sets Xy, -+, X, let
us say X, tannot oeeur among the sets ¥y, --+, ¥, ; and similarly a eertain
get Y, eannot oceur among the sets X, «++ | X,. Henece the number £; must
be different from each of the numbers w, -+, w. Tor, if we had & = n
(1 = & = 1), the sets X, and ¥, {X; # Vi) would belong to the same cliss
;. = 9, ; and therefore by (5) the =et X € X N ¥, would be empty. For
the same reason the number n; must be different from each of the num-
bers &, -+ , & . Thus, in particular, & # n;, and therefore at least one of
these two numbers is = (). Assume, ez, & # 0. By (6) there is a set X '; e D
which is different from X, . By (5) the sets X, and X are disjoint; consequently
the intersection

XNx=xnxn.-Nx
ig emptyv. Henee the intersection
XNX=XN¥N:-NY

must wlss be empty; but this clearly contradiets (7), all the numbers
£, m, me, - g being distinet.  Thus the two representations of X cannot he
different.
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*In what follows we shall refer to the sets X, , -+, X oseurring in the repre-
tion (13) of & set. X us the factors of X

14). In order that two sets X and ¥ of the I*" order be disjoint it is necessary
sufficient thut they have two feetors Xy and ¥, which are different, but
long to the same family 5.

This follows direetly from (5), (7), and (13).

(15). If two digjoint sets X and 1 of the (I 4+ 1" order hpve a tommon factor
X, = ¥V, and if X*and ¥* are the intersections of the remuining feetors of X
and ¥ respectively, then X* and ¥* are disjoint sets of the ™ order,

" This can be easily obtained from (13) and (14).

- Now we can prove by industion with respeet to I:

{16). Evéry family & € § of mutually exclusive sets of the I order has
power < 1.

- (16) is elearly true for { = 1, In faet, in this ease O is contained in the

family
' o =Ug.
Er

If there were two sets X, and X. of  whieh belonged to two different families
5y, and Hy, , they would not be disjoint, on account of (7). Therefore there
must be a £ < vauch that ® C £, and hence, by (6), o(3) < n
Now assume that (16) has been proved for a given positive integer I, and con-
gider a family ® © § of mutuslly exclusive sets of the (I + 1)st order. Let
X beany set of O, and let $: , Hey -0 1 By & < B <0 < Ea < W)
he those Families $; which by (13) contain among their elements a factor of X.
By (14} every set of & must have a factor belonging (o at least one of the fumilies
Dy, -, Peyy, o and thus alse to their union

(17} H* = 'ﬁhu U‘f’ize-: .

For every set Z of H* let us denote by B(Z) the family of all those sets ¥ e &
whieh have Z a4 a factor. _"Iu“r'e_hm'e thus a decomposition of & n subfamilies
@{Z} (which are not unnecessarily mutually exclusive):

&= U ®2).
AT
Henee
(18) (@) = x%_ [ (Z)].

Consider a particular family G(Z) where Z is any set of §*. If ¥ is a set of
(Gi(4), it has Z as a factor, Denote by ¥'* the intersection of the remaining
factors of ¥, and by ®*(Z) the family of all sets Z* thus obtained. G{Z)
being a family of mutually exclisive sets, we easily infer from (13) and (15)
that the family G*(Z) is also a family of mutually exelusive sets; furthermore
that the correspondence ¥ -+ ¥* between the sets of G4(Z) and G*(Z) is one-
to-one, and that therefore these two families have the same power. On the
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other hand, (8*(Z) consists of sets of the I order; thus, by applying to ! '
our inductive premise, we obtain:

{19 ™(Z)] = [ ZY] < n for every £ e5H*.

n being a regular, and thus an infinite, cardinal number, we also have, by (6}
and {(17),

(D) = (D) + -0 + olDya) <1
and hence, in view of (10),

(20) % f®(Z)] < n.
From (18) and (20) it follows at onee that & has power < n. Thus (16}
holds for every positive integer [
We can now extend (16} in the following way: B
(21) Every family 8 C % of mutually exclusive sets of any finite orders
has power < 1,
In fact, denote by (; the family of those sets X ¢ & which are of the i
order.  We obtain the decomposition

H=0mU---Ue,U...,
wheneo
(O < (O + o o®) +

{(The families @&, «++ , 8, «-+ are not necessavily mutually exelusive.) On
the other hand, we have by (16):

{8, < n for every positive integer I
Henee, 1 being by hypothesis a regular number > ¥, we easily obtain:
f{ﬁ.‘rj = ﬂ{@::l e AT E{ﬁ‘j‘;:l et |

Finally we ean show that

(22) Fvery family & . § of mutually exelusive setd has 0 power < n.

For, by {11), every set. ¥ (8 is a union of finite intersections of sets X ¢ 9
and their complements ¥ — X.  Furthermare, from (5) and (10) it Tollows that
the complement N — X of a set X e § is a union (not necessarily finite) of sets
of &, Therefore the sel 37 can be represented as a union of finile interseetions.
of sets X e, Henee we can correlate with every et ¥ e & (which iz net
empty) o nomsempty subset Y* C ¥ of finite ovder.  The family &* of all the
sets T* thus obtained has clearly the same power as (3, and by (21 this power is.
< I

From the definition of b, (22) implies:

0iG) = m;
and this formula together with (12) gives:
(23) ) = dE) = n.
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Thus our theorem has been proved for a particular set N of power n.  Now
Ceonsider an arbitrary set S of power =Zn.  The set & contains a subset N of
power 1. We can establish s one-to-one eorrespondence between the subsets
‘of N and those of N, , and by means of this correspondence we can construct a
field Fy of sete X © Ny © 8 which satisties (23).  This brings the proof to an end.

Corouuary 1. If n s a regular number >Ry, then for every number 8 = n
there eists o topological space S of power w guch that the family O of all open sefs

[ af ll sets which are both open and closed, o of all regular open sets) salisfies
the eondition: d(G) = n.
~ Proor. Conzider any set S of power 8. By Theorsm 2 there is a field
(of subsets of S such that b(F) = n and that every family & C© § of mutually
:Eik_g].uzive sets has power <n. We ean assume that S e F; for otherwise, we
ceould replace & by the field & consisting of all the selz X e § and their com-
plements 8§ — X, and we could easily show that §° still satisfies the conclusion of

Theorem 2. Now we correlate with every subset X € 8§ n new subset X e 8,
the elosure of X, by defining X as the intersection of all the sets ¥ ¢ § which
ceontain X(Y 2 X)), It is easily seen that with this definition S becomes a
topological space,

In this space, iz eontained in the familty G of all those sets which are both
“open and closed, and the family ( of all open sets is constituted by all the unions
Cof the sete X e 5. Henee it follows that b(G) = (F) = n, and that &, like §,
-i:tqea not contipin any family 5 of mutually exclusive sets with power c($H) = n.
Finally it may be noticed that & and the familv %" of all regular open sets also
'Iﬁée these two properties, for we clearly have

FCl Ce"cy,

Comornany 20 ff nods a reguler nember =W, hen there exists o complele
Buolean algebra B such that 3(B) = n.

Proor. This corollary follows directly from Corollary 1 sinee, as s well
known, the regular open sets of an arbitrary topelogieal space form a eomplete
Buolean algebra,” and any two elements of this algebra are disjoint if, and only if,
thev are disjoint in the usual set-theoretio sense,

Corollary 2 formulutes a condition which iz necessary for a cardinal number n
to be regular and =My, From Theorem 1 it follows that this condition is at
ﬂ'IEﬂHIDE‘ time a sufficient one. It is easily seen that in this necessary and suffi-
cient condition the term “Complete Boolean algebra™ ean be replaced by “par-
tinlly ordered set”, “ring (or field) of sete”, “family of all open sets of topological
;-ﬂg_aﬁa;” and =0 on.  If we restrict ourselves to the case of limil numbers, we
ahtain a necessary and sufficient condition for a number 1 > Mg to be weekly
inaccessible.

2 This reault was Arst stated in A, Tarski; Les fondements de la géometrie de corps,
Commemaoration of the first Polish Math, Congress, Iracow 1529, p. 42; see alsa (. Birkhoff
| ops it pe 102,
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Finallv we give a result of 2 more special nature:

Clontovrary 3. The following fwo senlences are equivalent:

(i) In every topological space of power =28 there exists a family of mutually
exelusive open sets with a magimal power.

(i) There is no weakly ingecessible rnumber wwehich @5 > 8y and =W,

Proor. From Corollary 1 it follows immediately that (i) implies (ii}; the
implication in the oppoesite direction can be easily derived from Theorem 1.

GENERAL REMARES ON INACCES3IRLE NUMBERS

In connection with the lnst corollary it should be noticed that the problem as
to whether there exist weakly inaccessible numbers ie, regular limit numbers
which are >n and <2° for an infinite number n is so far unsolved and probably
can not be solved at all within the present systems of general set theory. By
definition the weakly inaccessible numbers can not be obtained from smaller
ones by such operations as those of infinite addition or of passage from one
number to the next greater number. However it is by no means settled that
they ean not be obtained from smaller ones by means of the other arithmetical
operations, namely multiplication and exponentiation. For this reason we
single out. among the weakly inaccessible numbers a more speeinl eluss the 2o
called strongly inaceessible numbers, i.e., the numbers which can not be obtained
from smaller ones by an arithmetieal operation. While e.g. 2% is clearly not o
strongly inaccessible number, it i3 not known whether this number is weakly
inaceessible,

If we enrich the axiom svstem of set theorv by adding the so-called generalized
hypothesis of Cantor {which asserts that there is no cardinal number >n and
< 2" for any infinite number n), we can easily show that the two kinds of inae-
eessible numbers coineide.  However nothing compels us to regard the gener-
alized hypothesis of Cantor as the only pussible basis for set-theoretic investiga-
tions, and we can equally well consider the possibility of enrviching the axioms of
set theory by other axioms which contradiet the hypothesis of Cantor. For
instance it seems quite plausible that the following hypothesis would constitute
a vonsistent and fertile addition to the set theoretical axioms:

Hypothesis af inaccessible numbers: For every infinite number n, 2" is the
smallest weakly inaccessible number >,

Furthermore we should like to point out that many set theoreticul problens
are known at present whose solution involves the notion of an inaccessible num-
ber. The first problems of this kind were formulated more than thirty vears
ago: their number has however ronsiderably increased in recent years. Like
the problem solved in the present paper most of these problenss can be presented
in the following form: Is it true that a eertain cardinal number n has property P?

We want to give hera a few examples of such problems:

Proncen 1. {Phe represendation problem.)  Fs it true that every n-addilive and
n-distributative Boolean algebra {s isomorphic with an n-additive field of sets?
(A Boolean algebra B 15 called n-additive if for every set X © B with ¢(X} < n
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there is an element y € & such that ¥y = U 2. An n-additive Boolean algebra is

TiX

ealled n-distributive if
N U me=UN %5,

fagh fedly el

where § is any non-empty set with ¢(9) < n; & (for ¢ € ) are any non-empty
seta with (M) < n; x,, ;i always an element of B, and f runs through all fune-
tions which correlate with every element i e © an element j; e 8%, The number of
funetions f is in general = n, but it is assumed that the existence of Ol Xy
implies that of AV, ez

ProeLEm 2. (The prime ideal problem.) Is it true that the field of all subsels
af @ set N with power ¢(N) = n contains an n-additive ideal which s not a principal
ideal? (A family § is called n-additive if for every family & O & with ¢(®) < n

the union U X also belongs to §§.)
X & i

This problem can also be formulated as that of the existence of an n-additive
non trivial two-valued measure defined over all the subsets of a set N with
N =

Proprem 3. (The sel-function problem.) Is it true that there exists an n-
additive and n-multiplicative sel-function defined over oll sybsels of a set N of
power 1, which iz nof absolufely additive and ebsolutely mulitplicative?  (By a set
function we mean here a funetion (7 which eorrelates with every set X of a certain
family § another set G{X) which need not helong to the same family, A set
function & is called n-additive or w-multiplicative, if for every family $ © §
with () < un we have:

G( U X)= U (GIX)) or G ﬂ X) = 0N (G(X)),
X4 X e D
respectively.  If these formulas hold for every fumrly = §, the set function
is called absolutely additive or absolutely multrplu.atu.’e}

Probsresm 4. (The graph problem.) Is it true that if a complete graph G of
power 1 is split into two graphs G, and Gy, at least one of them containg a subgraph
of power n? (A graph is to be defined as an arbitrary set of non-ordered eouples
(2, y) with x = ». By a complete graph of power n we mean the set of all such
couples formed from the elements of a set N of power n.)

Prosuem 5. (The ordering problem.) Is i true that evcry ordered sel N of
power 1 contains a subset X of power n, which iz either well ordered, or becomes
woell ordered if we tnvert the ordering relation,

ProsLem 6. (Ramification problem.) Let v be the smallest ordinal number
such that the power of all ordinals £ < v is 1. Ta it frue that Jevery ramification
system of the ™" order, in which the set of all elements of the £ prder has power
< for every £ < v, containg a well-ordeved subset of the type ».  (By a ramification
system S5 we understand a partially ordered set which has the property that, for
every © e &, the set S(x) of all elements ¥ = z is well ordered; If the set S(x)
is of the type & the element = is said to be of the £ order. The order of the
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whole set S is the smallest ordinal number greater than the order of all elements
af S.j

None of these six problems has vet been entirely solved. 1t can be shown that
the solution of these problems is positive for n = Ny and is negative for every
infinite number n > ¥, which is not strongly inaccessible, in the ease of problems
1-5. (In the case of problem 6 it has been only shown that the solution is nega-
tive if n is not inaceessible and the generalized Cantor hypothesis holds)  All
the problems remain open in case of strongly inaccessible numbers =8

This situation is rather typical of the problems involving the notion of an
inacesssible number, which we have here in mind. Most of them so far have
resisted all attempts at solution in the case in which n is an inaccessible number
>N, ; it depends, however, on the nature of the problem whether strongly or
wenkly inaccessible numbers are involved. Ths situation differs slightly in
connection with eertain problems from the theory of ordered sets.  Here the
solution is positive for 8, , and for all regular mumbers which are not weakly
inaceessible, and is negative for mmfinite singular numbers; hut the problem
again remains open in the case of weakly inaccessible numbers >, .

The difficulties which we meet in attempting to solve the problems under
eonsideration do not seem to depend essentially on the nature of inneeessihle

¢ The solution of Problem 1 was given forn = 8 by b H. Stone (see G, Birkhoff op
eit. p, 8] The solution for numbers which are not inaecessible and = ¥, was mt'enﬂy
found by A. Tarski and has not yet been published,

For the solution of Problem 2. see A, Tarski, Fund, Math. Vol. 15, p. 42-50.  {Une. can-
tribation & la théorie de la mesire} (the cosen = B ,). For the ense when 1 is not inaeees-
sible, see A. Tarski, Fund. Math. Vol 30 {1938) p. 150 (Ditter iberdeclungnats,)

The solutivn of Problem 3 for n = K, was given by 8, Ulam, Fund. Math, Vol, 18 p
10150, (Zur Mosstheorie in der allgemeinen Mengenlohre,)  The solution for numbers
which are not inneeessible follows from a general theorem of A, Tarski; C. T, Soe. Varsiovie,
Vol 3 p. 158 {Theorem 2.18).

The solution of Problem 4 was given for n = B, by Ramsay on a problem of formal logie,
Proo. London Math, SBoe_ (2], 3 and for the numbers n = B, which are not inaccorsihle
by P. Erdis, appear in Rovista de Tucuman).

The solution of Problem 6 is ohvious for n = Ky for the numbersn = ¥ which are not
inneressible the aolution was given by Hansdorff, Mengenlebre (1814} p, 145-148, He does
not state Lhe solution explicitly, but it ean be dedueed easily from his results,

The solution of Problem 6 was given for i = 8, by D. Kanig, Uber cine Schlusswoizes
aug dem endlichen ing unendliche, Actn Szeged, 8. p. 121-130. For the numberan > &,
which are not inaccessible it was given by Aronsajn, It can be ghown that the positive
solution of Problem 1 for inaceessible numbers =8, would imply the positive solution of
Problem 2; the positive solution of Problers 2 implies that of Problems 3, 4, and 3: alsa the
positive solution of 3 implics that of 2, so that 2 and 3 are equivalent, Further, the positive
suliution of 4 implies that of 5, and the positive solution of Problem & for atrongly inae-
cessible numbers can be deduced from that of Problem 2 (however this selution can also be
obtained from weaker hypotheses and can be extended to all innecessible numbers),  Alsa
the positive solution of Problem 6 implics that of Problems 4 and 3, Finally the positive
solution of Problem 6 implies the positive solution of Problem 1 in the zpesial ease when the
Boolean algebra contains only n elements, The proof of these equivalences iz 83 vet
unpublished,
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mbers.  In most cases the difficulties seem to arise from lack of deviees
ch enable us to construct maximal sets which are closed under certain infi-
¢ operations, It i= quite possible that a complete solution of these problems
require new axipms which would differ considerably in their eharacter
v from the usual axioms of set theory, hut also from these hypotheses
inclusion among the axioms has previously been discussed in the literature
tioned previously in this paper (e.g., the existential axioms which secure
existence of inaccessible numbers, or from hypotheses like that of Cantor
chich establish arithmetical relations between the cardinal numbers.)

If we now esmpare the problem which has been aetually solved in this paper
those which we have reeently diseussed, we see that the peeuliarity of our
blem consists in two faets.  First, our problem has been solved for all eardi-
umbers, although the inaceessible numbers are essentially involved in the
n.  And secondly the number ¥, behaves in the discussion of the problem
singular limit number, and in a directly opposite way to the other regular
inaceessible numbers.
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