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CORRECTIONS TO TWO OF MY PAPERS

By P. Erpis
(Received February 24, 1942)

In my paper “On the divergence properties of the Lagrange interpolation poly-
nomials,” (Annals of Math. Vol. 42, (1941), p. 309-315) I stated that, if z, =

cos gﬂ' (p and g odd), and the fundamental points of the interpolation are the

roots of the Tchebicheff polynomial T,.(z), then there exists a continuous function
f(z) such that lim L,(f(x0)) = <.

Dr. Schénberg has pointed out that the proof there given is not correct.
There is a trivial error in lemma 1; namely, it is possible that z{™ = z{".
Nevertheless it is possible to save almost everything, practically without modify-
ing the proof. We prove the following slightly weaker.

TreoreMm. There exists a continuous function f(z) such that if z, = cos E L
where p and g are odd, then lim | L,(f(z0)) | = .

Proof. We need

(m (m)

1
Lemma 1. If 2{™ 5 o™ then [2{™ — 2{” | > —iform z n.

Proof. As in the paper.
Everything is now unchanged until the bottom of page 311. We have there
= fulz)
fx) = Z €n \/b—g—n .

n="np

where ¢, = =1 and will be determined later; the definition of f.(z) is the same
as in the paper.
L.{¢2(x0)) = 0 still holds (p. 313 top). It suffices to show that, for »r > n,
f,@™) = 0. And this is true, for otherwise either
wi? =",
which is impossible since (21 — 1, r) = 1, or we have

1
¢ ) -
2 #o® and |z” -2V | < 5T

which does not hold by lemma 1.
Define now e, = signum L, (¢:(x0)); then clearly

flwf a'(xl))) |
< LI ) |
| Inl ) | = |2 S22
and the rest of the proof is unchanged.
At present I cannot decide whether a continuous function f(x) exists such that

lim L.(f(z0)) = ==, or whether a continuous f(z) exists with lim L.(f(z)) = «q,
where a # f(x).
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Added in proof. By a more careful analysis, I can now show the following
theorem: Let B be any closed sel, then there exists a continuous f(x) such that the
limit points of L. (f(x0)) ts precisely the set E. The set E can consist of the poini
+ « alone. This of course is a generalization of the result mentioned before.

In my paper “On some asymptotic formulas in the theory of factorisatio numero-
rum” (Annals of Math. Vol. 42, (1941) p. 989-993) the main theorem is stated

incorrectly. The correct statement is as follows:

1
Tetl < a; < as < -- - be asequence of integers such that for some p, > 1 pr

landz

f(n) the number of factorisations of » into the ¢;’s. We consider order in other
words @:a. and @,-a; are different factorisations. Also f(1) = 1. Denote
F(n) = >_praf(k). Then we have

F(n) = en®(1 + 0(1)).

The proof remains entirely unchanged: in fact this theorem is the one really
proved in the paper.
It might be of some interest to investigate what happens if the conditions of

]oa

converges and not all the a,’s are powers of ai. Denote by

1
our theorem are not satisfied. There are three cases: . 2 i p diverges for all

k. Then it is easy to see that lim 1—‘1@ = = forall k.

1 1
II. For all values of k for which 2 7, - converges Do =< 1. Clearly,
1 1
there exists a p such that for every ¢ » i goFe converges but Y a di-
1 1
verges. We can easily see that ) oy 4 converges and is <1. Forif ) 7 P

1
diverged we would have, for sufficiently small ¢, >, praz > 1;and since, for large

1 1 )
k, }:?,1 2 < 1, there would exist a ko such that >_ =, = 1—which contradicts

the hypothesis.
Now we show that

. F(n) _
1) lim = 0
and

. F(n) _
@) s =

1
Suppose (1) does not hold. Write 3. o A <1 and ¢ = lim sup —~ (u)
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We have
Pw =2 (L) +1,
so that
P < o3 & 4 o) < e + o)

for sufficiently large u. This is possible only if ¢ = 0. (2) can be shown by
similar arguments.

III. There exists a p such that Z,_, i = 1, but Z.-;

seems likely that in this case

dlverges 1t

ne

But I am only able to prove that

3) lim £ — o,
. , F(n)
Suppose that (3) is not satisfied. Let the greatest lower bound of PRSERETY
be ¢ (¢ > 0). Choose k so large that
Eloga; 2
; @ e

Denote by g(n) the number of the factorisations of n as the product of the a;
for i £k, and let G(n) = > n_i g(w). Clearly for m < a;, G(m) = F(m). Thus
for m = a;

G(m) :
(m+ 1)~ ~
Next we prove that for all m
G(n)
@ m+1y =¢

1
where D i o = 1L (" = p).

Clearly (4) holds for all n = a;. We prove (4) by induction. Assume it for n:
we shall prove it for n + 1. We have

G(n+1}—ZG[n+l]+1 ‘_1([”+1]+1) 3 1

I
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Therefore

which proves (4). Thus lim = ¢. (We know from my paper that the
limit exists.)

1
Put h(s) = 2 i ; then clearly

_1 e
2 —h(s) a=1on’

,nP

G
Therefore a simple calculation shows that if lim ?E:?-)' exists the limit equals

E log a\™*
(P’E f@’ )

gl

. . . 1
which proves (3). It is easy to construct sequences a;, with Z?-l gy = 1,
3

log a;
21— = ® and
a;

. F(n) _
(5) ].lm _?]'._'° =

But I ean not prove that (5) holds for all such sequences a; .

Professor Hille has given the following result. (Acta Arithmetica Vol. 2,
p. 140): Let py, < pr < - - - be a sequence of primes, and let a; < @, < - - - be the
integers composed of the p's. Denote by f(n) the number of factorisations of n

1
into the product of the a’s, and let F(n) = Y m_if(m). If D 7. s =1 then

0 s T
lim E—;(%—?-) = (p & IM) . His proof (which uses the theorem of Wiener Ike-

=1 {1

lo
hara) seems to apply only if > o, L < w., TIf (5) is always true in case iii,
log a;
Hille's result would follow even if Z:‘;l f‘f = o,

Recently I found in the literature a few results, which I proved in my paper
“Flementary proof of some asymptotic formulas in the theory of partitions”
(Annals of Math, Vol. 43). On p. 447 I prove the following result: Denote
log P.(n) _ 1
(log n)®? 2log+
This result was proved by Mahler (London Math. Soe. Journal, Vol. 15, p. 123.)
Mahlers proof is completely different from mine. He also obtains

—in(a—1) n —in{n=1 n
T 2r T rz
s U

n! n!

by P.(n) the number of partitions of n into powers of r then lim

o , where ""n<Z<z<r'(n+1).
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On p. 448 I prove the following two results:

I. Let a1 < @2 < --- be a sequence of integers of positive density «, the a’s
have common factor 1. Denote by p(n) the number of partition of n into the a’s.
Then log p(n) ~ r\/2an.

II. Let @, < @2 < --- be a sequence of integers such that every large integer
is the sum of different a’s. Denote by P(n) the number of partitions of n into
different @’s. Then log P(n) ~ 7+/%an. Similar results were proved by K.
Knopp (Schriften der Konigsberger Gel. Ges. Math. und Nat. Klasse, 2 Jahr.
Heft.3 1925). His proofs are quite different from mine and are more complicated.
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ADDENDUM
By Emnar HiLLe

The objection raised by Dr. Erdés to formula (4.3) of my paper “A Problem
in ‘Factorisatio Numerorum’ *’ is well founded. However, the results on pp.
139-140 are entirely correct if the basis P contains only a finite number of primes
pi, . When the basis is infinite it is necessary to assume that lim,_., {(s; P) > 2
where ¢(s; P) = i [1 — 231" and oy = oo(P) is the abscissa of convergence
of the infinite produet. This assumption implies that the equation ¢(s; P) = 2
has a root p(P) which exceeds op. If this assumption is satisfied, formulas
(3.8), (3.9), (4.1), (4.3), and (5.1) remain valid. If, instead, {(so; P) = 2 so that
p(P) = oy, the Tkehara-Wiener theorem does not apply; the analysis breaks
down completely and cannot be saved by assuming that ¢(oo; P) is finite.
Though formula (4.3) still makes sense, it is at best unproved. If {(oy; P) < 2,
the formula becomes meaningless and it is not enough to replace p(P) by ao
since Erdos has proved [formula (1) above] that in this case F(n) = o(n’®) while
it is not necessarily true that {’(o ; P) is infinite.
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