SOME SET-THEORETICAL PROPERTIES OF GRAPHS

By P. ERDOS
{(University of Peunsylvania)

Let i <k <1be any integers. A theorem of Ramsey ! states that
there exists a function f (i, &, [) such that if n > f (¢, k, I), and if we
select, from each combination of order & of n elements, a combination
of order i, then there exists a combination of order ! all of whose
combinations of order ¢ have been selected.

All the proofs give very bad estimates for f (i, k, I). If i = 2 the
theorem of Ramsey can be formulated as theorem about graphs:
Let n > ¢ (k, l), and consider any graph having »n points ; then either
the nnmber of independent points is > k or the graph contains a
complete graph of order * [.

—2
s ) This is probably very

k—1
far from the best possible value. We do not even know whether or
P (3, 1)
l
result holds : There exists an integer ¢ (independent of ») such that,
given a graph without a triangle, we can number its vertices with
the integers 1, 2, ... ¢, in such a way that no two vertices numbered
with the same integer are connected. It is easy to see that e > 4.
Ramsey * also proved that if G is an infinite graph, then either G

Szekeres’ proof gives ¢ (&, 1)5(

not lim < oo is true. Perhaps even the following stronger

tF. P. Ramsuy, Collected papers. On a problem of formal logie, 82-111. See also
SkoLuM, Fundamenta Math., 20 (1933), 254-261, and P. ErpUs and G. BZEKERES,
Compositio Math. 2 (1935), pp. 463-470.

® In a graph G a set A of points is called independeunt if no two points of A
are joined by o line. A graph is complete if any two of its points are joined by
a line.

3 RaMsEY, ibid.
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contains an infinite set of independent points or G contains an infinite
complete graph.

If the number of vertices of G is not countable, Duschnik, Miller
and I proved the following theorem *: Let the power of the points
of G be m; then either G contains an infinite ecomplete graph, or G
contains a set of m independent points.We can also state this theorem
as follows : If we split the complete graph of m points into two sub-
graphs G, and G, then if G, does not contain an infinite complete
graph, G, contains a set of m independent points.

In the present note we prove the following results :

Theorem I : Let a and b be infinite cardinals such that b > a% If
we split the complete graph of power b into a sumn of a subgraphs at
least one of them contains a complete graph of power > a.

[n partieular: If b > ¢ (the power of the continuum) and we split
the complete graph of power b into a countable sum of subgraphs; at
least one subgraph contains a non denumerable complete graph.

Theorem I is best possible. As a matter of fact, if b = a* = 2% we
can split the complete graph of power b into the sum of @ subgraphs,
such that no one of them contains a triangle. For the sake of simpli
city we show this only in the case b = ¢ = 2%.. We write

where G is a graph connecting every two points of the interval (0, 1),
; . 1
and the edges of Gy connect two points« and y 1i"::j—kn,_—1 >y—a= o
Clearly none of the Gj’s containg any triangles,
Let us now assume that the generalized continunm hypothesis is
true, i.e. 2% = Ny, 1. Letm = R, 49, and let G be the complete
graph containing m points, then we prove

Theorem 11 : Put G = G, + G, ; if G; does not contain a complete
graph of power m, then G, contains a complete graph of power ¥, . 1.
From theorem I it would only follow that either G, or G, contains a
complete graph of power N¥,..1. By using results of paper of Sierpin-
ski ° it is not difficult to find a decomposition G=G, 4+ G, such that

¢ Ben Dusckxik and E. W, MiLLER, Partially ordered sets, Amer. Jowrnal of
Math., 63 (1941), p. 606.

3 W. Busreinski, Fundamenia Math., 5 (1924), p. 179.
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neither G; nor G, contains a complete graph of power m, which
shows that theorem II can not be improved. (We have to assume
that m is accesible).

Tukey and I bave shown by using a result of Sierpinski ¢ that the
complete graph of power ¥, ean be decomposed into the countable
sum of trees. Without assuming the continunm hypothesis we can
not decide whether this also holds for the complete graph of power ¥,.

Proof of theorem I. Let G be the complete graph of power b ; write

G = E G'a_, X < &)a,,

where Q, denotes the least ordinal corresponding to the power a.
Let p be any point of G. We split the remaining points of G into a
classes Q, , o, < Qq, by the rule; — a point ¢ is in Q,, if the line pq
is in G, . Take now an arbitrary point p, €Q, (2 =1, 2 ..., %, < Q4)
and split the remaining points of Q, into classes Q, ., x < Qq4, by
the rnle: — ¢ belongs to Q,,, , if the line p, ¢ belongs to G, . Next
we take an arbitrary point p, ., inQ, ., and split the remaining
points of Q, ., into classes Q, »y ete. If & is not a limit ordinal we
define the classes L3 - ...u 1M the obvious way from the classes
Q (04°< £2,). If k is a limit ordinal, we define the classes

Koy By oon % T |
A S—— ,:___ (¢ < k)as 11 Q, , . .. Our constraction can stop only if
for some % all the claslsfez Q.,, ,, ..., Decome empty ; in other words if
all the points of G become p, , . .. 's(i < k). Denote now by at
the smallest power > a, and by Q,. the smallest ordinal belonging to
at. We shall prove that not all the sets Q.,, ... 05 (1 < Qqv) can be
empty. Clearly the power of the points p,, ., .« (i < Qq+) does not
exceed at . a® = a®(i.e. a® > at). But the power of the points of G is by
assumption > a%; thus not all the points of Garep, ., .., s (i < Qq:).
Let r be such a point, and consider the sets Q, ., ..., (i < Qq+) with
reQ,, 0 .. ap Clearlyre 11 Q, ., ... thus Q, ., .. (i < Qqv) is

1< Qat
non empty. If ¢ is not a limit ordinal, »; runs at most throngh a values

(i < Qn) thus there must be an index j (j < Q) which occurs in
Q.,, ., .. a" times, Clearly G; contains a complete graph of power a*.
Forletj == %, = a;, = ... 2, = .... and consider the pointsp«',%_"_ﬂirl_
It is clear from our construction that the complete graph determined
by these points is in Gy, this completes the proof of theorem I.

g s

¢ W, BrurpINsKI, ibid.
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Proof of theorem I11. We state theorem II as follows : Let G be a
graph containing R, ., points. Then if each set of independent points
has power < W,.s, our graph contains a complete graph of power
Wz 1

Let p,, py, .- p,, .. be a complete set of independent points
(2, < Qug+1- Clearly every other point of G is connected with at
least one of the p’s. The point ¢ of G will belong to class Q, if p, is
the p with smallest index with which ¢ is connected. In each Q,, con-
sider now a maximal system of independent points. Thus we obtain the
points p, ., %, 23 < Qxz 11, and we split the remaining points of
Q., into classes as before ; the point ¢g=Q, belongsto Q, ., ifp, ., is
the point of lowest index with which ¢ is connected. We can conti-
nue this process as in the proof of theorem I. We claim that
this process can not stop in ¥, steps, in other words, the sets
Q... vy J < Quz iy, can not all be empty. For if these sets were
all empty, all points of G would be p, ., ...'s for some j < Quzi1.
But the number of these points does not exceed N, H::_l = Hzi1,
by the generalized hypothesis of the continunm,.

Consider,then, a sequence of sets, Q. Qu,, oy «vey Quy, oy, oo J< Qwyi
whose intersection is non empty. Clearly our graph contains the com-
plete graph determined by the points p, , P, o,y .- Pu R O
and this completes the proof of theorem II.

I do not know whether theorem II remains true if the power of the
points of G is ¥, .1, where ¥, is a limit eardinal.

If the power of the points of G is a limit cardinal e. g. W, the theo-
rem is certainly false. Let M be the set of points of G and write

4y Bgoee

M = J§ M; where the power of M is ¥,. We define G as follows: Two
i=1

points of G are connected if and only if they belong to the same M.
Then clearly G does not contain a complete graph of power M, and
every system of independent points is countable.

In general, let m be a limit cardinal, which is the sum of Nj sets of
power < m, but not the sum of fewer than $; such sets. Then we can
construet a graph G the power of whose points is m, such that G does
not contain a complete graph of power m, and every set of indepen-
dent points has power < ¥;. On the other hand, perhaps the follow-
ing result holds: If such a graph G does not contain a complete
graph of power m, then it contains a set of independent points of
power ¥,—1.

Let A be a set of power m, and let » < m. To every point xzA, we
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correspond a subset f (x) of A such that @sf (), and the power of f (x)
is < n.A subset B of A is called independent if B — f(B) is empty. If
we assume the generalized continuum hypothesis we ¢an prove that
there always exists an independent set of power m. This result has
been proved previously, withont using the continuum hypothesis, in
the cases: (I) m is not a limit cardinal; (II) m is a countable sum of
smaller cardinals 7.

" D. LAziw, Fundamenta Math., 3 (1936), p. 304. SopHIE PICCARD, Fundamenta
Math., 29 (1937), pp. 5-8, C. R. Soc. Sc. Farsovie, 30 (1937).
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