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ON THE UNIFORM DISTRIBUTION OF THE ROOTS
OF CERTAIN POLYNOMIALS

By P, Enpiis
(Received July 21, 1941)

1
_: 1
] 0
.'Ij' A Ig'
Camd frl {n}
2™ 2" )

be a tri lar matrix, where, for each n
& triarguli ; ! )
1z >a" > -2V 2 -1,

Since z{" may be written in the form o}" = eos (#{"), where 0 = ¢!™ =
we may define another triangular matrix

Ch

............

02 <ol <cvvgdiV g0

Put wz) = [ — -‘t!‘] Suppose 0 = 4 < B = n. We dénote by
W,{A,, B) the number of the #;in (4, B)., Let —1 =4 <.b = 1. Then we
dennte by M.(a, b) the number of the z; in (a, h). It does not matter whether
the intervals (4, B) and {a, b) are open or closed,

Iu a previous paper” Turin and the author proved that if

| walz) | < {‘H}

N, B) = E= i ot tog £,

IWH omit the upper index n where there is no d.ungar of eonfusion,
f‘ﬁn the uniforuly denge dintribution of eerlain uqmneﬁn of points, Annnle of Math, Vol,
(10400, pp. 162-173.
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In another paper’ we proved that if | 1L"(z) | < e then
B—A
w

N.i4, B) = n+ O(B — A,
(o (x} denotes the fundamentsal polynomials, i.e. Ii" (#) = w(z)/[w' () {z — 22)]
isof degreen — 1, and Iilzy) = 1, &z = 0,4 = &)
In the present paper we are going to improve these results, First we prove
Treorem 1. Pulay = —1, . = 1, and lef

t'fl (-] = i
(1) ' _{I;L | walz) | < & and Hﬁn:giﬂ | wal2) | > g1 k=01 n.
Then
N4, B) = E=4 0 4 ollogn(s — 4)1

This result is the best possible.
Next we prove
Tarorem 2. Let | l{z) | < ¢0 ; then

N4, B) = 2= 0 4 0l(tog n)(log n(B — 4))

if | L) | < n', then
B mLE
aT

Na(d, BY = B =4 u 4 0ltog m).

Theorem 2 iz also the best possible. Theorems 1 and 2 ean be generalized to
Toeonem 3. Lef w(z) be such thai

E”;{.“} < max Je@)] < ”*'gi”} h=0,1,2 . n
then
N4, B) = 2= 4 0l0g n)og £

Similarly, if | biz) | < eafin) then
B—4A
w

N4, B) = n + Ol(log n)(log nf(n))].

To prove Theorem 1 we first have to prove two lemmas.
Lumva 1. Suppose that (1) holds; then

Cy Chit 4o
(2) ﬁ“"'}"‘“ <o, k=01,

3 O Anterpolation {1, ibid. pp. 510-553.
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Proor. A theorem of M. Riesz states that if h(z) is & polynomial of degree n
which assumes its absolute maximum in (=1, 1) at the point z;, and if
Yi, v+, Yr are the roots of i(y) = 0 in the interval (—1, 1), then | & — 6| =
x/2n, where cos 6; = y; and cos § = z5. Thus if 2, lies between the roots y;
and yipr, then f4y — % = w/n. Also f max  hiz) assumes its smallest

, ViSEENi41
value for ¢ = k then

'EE.H -0 5 w,."n,
Buppose that (2) does not held, for example assume that
Tppr — hy > r{“}fl‘nl

where lim r(n) = =, Take ¢ > 0, and define u and v by the relations: ¥ and v
are symmetric with respect to (£ + 2411)/2, and arccosu — arccosv = o/t + e
Consider the polynomial ¢(z) = w(z)-(xr — w)-(x — 0)/(z — n)lzx — 7epa).
It ean be seen that if w £ = = v then

(z — wiz —v)
(# — 2}z — Zus

1
hence
(@ max |@(x) | < (en/r(n)) max  walz).
wEEEY EyEEZ i+l
Also, since the sum of two quantities whose sum is fixed increases as they tend
to equality, we have, in the intervals (—1, 2¢) and (221, 1),
(4) | (z) | > |ela)|.

We have arc cos v — are cos ¥ > w/n; and o simple caleulation shows that,
if r(x) is large enough, #i.; — arc cos v > w/n and are cos u — 0 > 7/n; thus
it follows from the lemma of M. Riesz (applied to ¢(x)) that max | é(z) | between
two- consecutive roots of $(x), assumes. its smallest value between the roots x;
and £y, where gither § = & — 2ord = k 4+ 2. Thus, from (3) and (4),

max |w(z)| > =~ - min max |w(z)|.
IR SEE T+ C11 =Bl rrn @i SES e+

This contradiets (1), which completes the proof. By the same argument we

could prove the other inequality in (2).

CoroLrarY. We obtain from Lemma 1, by a simple compulation, that
";.?-{1—2::)'*.-:““-“:: o § 5 (k=1,2,+-,n—1).

Lesmma 2. Suppose that (1) holds; then for —1 = z = 1,

1z | < o L= B) {i «2)!

FALY
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Proor. We have li(x) = elz)/|le'(m)iz = x)]; thus by (1) it suffices to
ghow that

w'lry) > eu "'n—'_i"}l

Consider the polynominl iz} = w(x)/(z —za). Itisclear that either | w'(zs) | =
pin) 2 ¢ |if g Sy S o, or [win) | =¢n) 20 ifn Sy S .
Without loss of genernlity we can sssume that the finst inequslity holds. Then
by (1) and the corollary to lemma 1 we have

max | wz) |
n-oisesn

A — Ty

n

w'(dy) = > G“W

which eompletes the proof.
Now we can prove Thoorem 1. To simplify the caleulations we assume that
a=0,b =1 Then we huve to show that, assuming (1)

n

-z—cuhgn{.‘lf.[ﬂ,‘l){;+m log n.

It will be safficient to prove the first inequalitv. Buppose that it does not
hold; then
M0, 1) < g — rin) log n, lim rin) = ==,

Congider the polynomial giz) whose roots are defined as follows: In the interval
(=1, log u/n), g{x) has the snme roots as Ty (2)(Te(2) denotes the n® Tehebi-
cheff polynomial); at the points (3) log n/n, r = 1, 2, «++ s where 2 1s such that

() loen <1 < (B) ",

glx) has a root of multiplicity [rlrl,‘:] : and finnlly g(2) vanishes at the roots of
w(r) in the interval (0, 1), Clearly the degree of glr) does not exceed

§+1ngn+a-1-ugu t }+— —vin) logn <mn—1
if r(n) > 10. Thus, by the lemma of M. Riesz, glz) assumes ite absolute
maximum in the interval {(log a/n, 1). Suppose that it assumes its abdolute
maximum st 7o, log n/n S 5 = 1. We have for some r

N Rt

(1f (8" log n/n > 1, we replace it by 1.) Put (§)" log n/n = g; we consider
the polynomial
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o) =2 =[]

By the Lagrange interpolation formula we evidently have
qilz) = g'm{#}hfm)

‘where the zi are the roots of w(z). Thus

Iﬁ mlxg) = i AERTNERN

Now gilze) = 0 for 0 = 5,= 1; and since 1, was the place where g(x) takes its
‘absolute maximum, we have

mize) = 20t + 1)Pplx)

if = satisfies

ﬁ} 1‘*"‘@)2 = 1'”'”(1+1)(2) t=0,1,2--

n
}'ﬁfﬁ}'mny be verified by noting that
oy o ) o3 A Se e A
i (2 — q)7 - (zg — g)7 L (n = q) '
Hence from (5) and (6), by putting

_]—ﬂg.ﬂ I.(g) = U,
n _ j

__ﬂmﬂy large p.
or the x; in Yy we clearly have 2y < —3%. Thus by lemma 2.

ﬂl
2 < mﬁfjﬁ | i) | < i
: m*:—hr large p. Thus 31+ ¥u < 1, and this contradiction establishes

0 the proof we did not use the full strength of Lemma 2; in fact we only used
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| Iz} | < ea n.]m—xl‘ We would have had to use the sharper estimate if
— Ak

we had not restricted ourselves to the interval (0, 1) but had considered &
Yemall” interval near —1 or 4-1. )

Now we have to prove that the error term in Theorem 1 is the best possible.
Put.

= m=-+""+2— 0 =

lju =§r =l B 2 b I—IE

where k and ! take all positive integral values such that & < » — n™*, and
% > n ' it is easy to see that the number of the #'sizn + 0(1). Consider the
polynomial w(x) whose roots are the cos #'s. It can be shown by elementary
computations that w(z) satisfies (1), We do not give the details. On the other
hand it is casy to see that

M.0,1) < g — enlog n

whieh shows that the error term in Theorem 1 is the best possible.
The proof of Theorem 2 is very similar to that of Theorem 1. The difference

is that, in defining g(z), glx) now has roots of order [’Llﬂgn] at the points
(2)" log n/n. The proof of Theorem 3 also runs along the same lines,

UniversiTy oF PENNSYLVANTA
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