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ON THE LAW OF THE ITERATED LOGARITHM

By Pavn Enpiia
(Heceived December 26, 1941)

Introduction

Let ¢ be a real number (0 = ¢t = 1), and let = O.g(f)eall) -+ - be ita dyadie
expansion, or equivalently,

ool ell)., - {ﬂ' -
I:ﬂ.l} 1 "“é"‘ + ? + 2', ]

T‘hem e.(t) = 0 or 1 aceording as the u:ltegral part of 2" is even or odd. Tt
is well known that 1':.(5)} (=1, 2 -.-) iz an independent system in the
gense of probability,! and that

1 b 1 1 1 B ' » -l
02) [awa=2 [ (at- ﬁ) a=1.
Let us further put
(0.3) 5= Zal) = 7.
Jes=1 a
1t was proved by A, Khintchine’ and A. Kolmogorofi* that
(0.4} lim sup ﬂfn—m[ =1
R (E log log 'n)
for almost all £

Let @in) be & monotone increasing non-negative funection defined for all
sufficiently large integers. Following P. Lévy we say that @(n) belongs to the
upper class if, for almostall 4, there exist only finitely many » such that

(0.5) Jult) > p(n);

and p(n) belongs to the lower elass if, for almost all ¢, there exist infinitely many
ni such that (0.5) is true, According to the Wwell-known law of 0 or 1, each ¢(n)
must belong to one of these classes. Then the result of A. Khintchine and A.
Kolmogoroff stated above means that (n) = (1 4 &) (}n loglog n)* belongs to
the upper class if e > 0, and to the lower class if e < 0.

The purpose of the present paper is to give a sharpening of this result. The

1 Ci. M. Keo and H. Bteinhaus, Sur les fonetions indépendentes, Btudia Math. 6 (1538),
46-h8, &0-66, BR-07.

2 A. Khintehine, Asymplotizche Geselz der Wahkrecheinlichkeitsrochnung, Berlin, 1933,

1A, Kolmogorofi, Uber dan Gessts der iterierien Fogarithmus, Math, Annalen, 101
{1929), 128-135.
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main results are stated in Theorems 1, 2, 8, 4, and 5 below. Among other
results, it follows from Theorem 3 that, for & > 3,

) (Hfﬁ—‘)i(lnghgn+glmn+%lupn
0.8
> +-~~+;mn+(%+l)h¢-ﬂ)

belongs to the upper class if ¢ > 0 and to the lower class if « § 0,

Our proof is direct and elementary. We do not assume the result of A.
Khintehine and A. Kolmogoroff, and the paper can be read without knowledge
of any particular results concerning the law of the iterated logarithm. The only
facts we need are the notion of independence, and the well known inequality

©.7) aze ™™™ < Pr(4ua)) < erze ™™,
whera
(0.8) Au(z) = Elt: fulf) > 2]

means the set of all real numbers ¢ (0 = ¢ 5 1) satisfying f.(t) > =z, and Pr{4d)
means the ordinary Lebesque measure of & measurable set A in the interval
0StsS1l o (i =12 ) wil degote positive constants.

Throughout the present paper, the sequence |m,| (n = 1, 2, +++) defined
by m; = 1and '

{ﬂ.m My = [‘-H“IL n = ’. 3. L L
will play a fundamental réle. The fact that we adopt the sequence [m.,}
(n = 1,2 ) instead of [a"] (n = 1, 2, ---), which was used by A. Khint-
chine and A. Kolmogoroff, is essential in our proof, and will enable us to ob-

tain our sharper results, The following inequalities, which are easy to prove,
will be used very often:

(0.10) My < Magr < Oy,

Ty L
[ﬁ.ll] “lqlﬁgm.{mhlqm‘{“k‘k‘m

My i i
Wit w.) < (masy log log ma.y)
oy ()

§
— (m, log log m,)! < m(]uum m.) .

It is not difficult to extend our results to the ense in which the parameter n
is continuous, i.e. the case of Brownian motion.'! We can definé the upper and

s Cf. A. Khintehine, log, eit. 2. Cf. also X. Wiener, Differential apace, Journal of Math.
and Phys. 2 {1823), 181-174, and the book of P. Lévy quoted in footnote 5.

n
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the lower classes in this case, and can obtain the corresponding results, It was
stated by P. Lévy® that A, Kolmogoroff has proved the following result: Let
wiA) = @(A)/A' be monotone increasing. Then & necessary and sufficient
condition that ¢()) belong to the lower class iz given by the divergence of the
integral

Eﬂ.lE:l f *{h:lﬂ_-—'lllﬁ‘“'lh%-

It is easy to see that this is equivalent to Theorem 4. As far as I know, the
proof of A. Kolmogoroff has not been published, Recently, J. Ville" proved
that the divergence of (0.13) is necessary, This corresponds to a special case
of Theorem 1, but his proof is entirely different from ours,

1
TureoreM 1. ¢(n) belongs to the upper class tf 1t is monolone increasing and if
(1.1) 2, Pridn,(p(ma)) < =.

Proor, First we remark that we may assume that
(1.2) e(n) S (n loglog n)*

for eufficiently large n, Indeed, otherwise we may consider g(n) =
min (g(n), (n loglog n)!) instead of e(n). It is clear that ¢;(n) is monotone in-
cressing, that ¢(n) satisfies (1.1) if ¢(n) does (because, by (0.7), win) =
(n log log n)* satisfies (1.1)); and that if ¢, (n) belongs to the upper class so does
win) too.

Next we notice that, under the assumption (1.2), we have

{1*3} Pf{tin‘ﬂl:p{m.}}:l = GIP?EAH.{P{MH}H*

This is an easy consequence of the relations (0.7), (0.10) and (0.11), We omit
the proof.

Now assume that Theorem 1 is not true. Then there exists a constant g; > 0
such that, for any My = m,, , there existe an Ny = ma; (ny > no) such that

fl14) . Pr(u {E:ﬂ Aule(u))) > e > 0.
Let us put
Blu) = Aule(u)) — Adule(u)) 2 Aulel))

(s e
= Eli:fu(t) > olu); filt) S olv), My <v < ul.

4P, Ldvy, Théorie de 'addition des pariables eléaloires, Paris, 1087,
0], Ville, Etude eritique de la notion de collectif, Paris, 1037,
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Then |B(u)] (M < u S N,) are mutually disjoint, and
(1.6) Y Bw= E A elu)).

MowfMy Mycw

For each u (Mo < u S Ny) take an n (ng 5n <m}mﬂhihatm., < S Magly
and put

(1.7) Al mey = Blt: fa i () — f:l) = 0]
Then it is clear that B(u) and A ._,, are independent, and hence
(l.ﬂ} Pf{-ﬂiﬂ'] &- n.,.H) - PI"(B{H”PI’{A. -:u-t) = i'ﬁ{-ﬂ{“}L

On the other hand, since ¢ « B(u)- AL .,,, implies fu (0 2 full) > o(u) 2
wlm,), we have

{I—E:I B{“] d': Ty : A-."{’{m-}}
form, < u S Mai. Henee, sinee |B(u) A% a,.,] (M < u S N;) are mutually
disjoint, we have, by (1.3}, (1.8), (1.6) and (1.4),

e 2, Pridalp(ma)) = E H{A.,+.{@(ml}}

Hb{hﬁﬂ'.

= Y Pr(Blu): a.-..,}zl 2. Pr(B(w)

(1.10) MyEngNy MyiugNy
24Pr( T BW) = 4P T Aude(w)) >3 >0,
My<uENg Mg < uE N

Since 5 and o, are positive constants, and since M; = m,, can be arbitrarily
large, this contradicts to the assumption (1.1). This proves Theorem 1.
Corotrary 1. ¢(n) = (1/(2)' + & (n log log n)* belongs to the upper class
Jor e > 0.
CoroLtany 2, The expression (0.6) belongs to the upper class for € > 0.
Proor. Follows immediately from Theorem 1 and (0.7).

Taeorem 2. If ¢(n) is monolone increasing, then a mecessary and sufficient
condition that ¢(n) belong to the lower class s that, for almost all t, there exist
infinitely many n such that
(2.1) . Tma() > plmy).

Proor. The sufficiency is obvious. In order to prove the necessity, lot us
assume that o{n) belongs to the lower class, First we remark that we may
assume

(2.2) eln) = (nlog log n)!

for sufficiently large n. Indeed, by Corollary 1 to Theorem 1, go(n) = (n loglog n)*
belongs to the upper class, Hence, if we put @i(n) = min (#(n), @(n)), then
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wiln) belongs to the lower elass if ¢(n) does; and if the necessity of the condition
is proved fort(n), then it is ohviously tme for ¢(n) too,

By assumption, thers umta o constant ¢ > 0 such that for any My = ma,
thareaxintaanm=m.., (m > ) such that

(2.3) L Ade(w)) > o,
’--‘ NNy
Let us put
Clu) = Aulelu)) — A.{v{u}}- _E A.[qn{!}}

= Elt:f(0 > wlu); filt) = w(# u<er S N
Then [Clu)] (My < n & Ny are mutually disjoint, and

(24)

(2.5) 2 Cwy=_ 3 Auelu).
Mg gy "._{I-j_-i'p a
Foreachu (M, < u € Ny) takennn (ng S n < ng) such that m, < u S m...
and put
(2.6) A« = Elt: fult) — f<. (1) = 0]

It is to be noticed that C(u) and A . are not independent, but it ean be shown
by computations’ that there exists a constant ey > 0 such that

20 PriC{u) a5, 4) > enPriClu)).

1 We aketeh the proof of (2.7): Lét us put
Clw, ) = Elifu(d) = k; Sl S o),  w<vs N,

where k > o(u) is an integer or integer 4+ § sccording as w is sven of odd. Then n simplo
ealeulation with binomial coeffictents shows that

Pr Clu, k) > cuPriCiu)).
(itﬂ-ﬂi%i*-fﬂ\-.‘r 8 ] e

Thus it suffices to show that, Tor w(u) < k = plu) + u/fplu),
PriCiu, kY dmen) = caPr(0iu, k),
Now, it s easy to ses that

pod a simple calenlation shows that

@:J’“@?J'

whieh completes the proof of (2.7).
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On the other hand, since { « C{u}*d.i,. ;mpliaaﬁ.,{ﬂ E,MEJ > plu) Z plmy
we have '
(2.8) C(u) Brp € Amglpima))
for m, < 1t S mae. Henee, since |Clu). Al (My < u 8 Ny) are mutunlﬁ
disjoint, we have, by (27) and (2.5),

T Pldnemnz L 'P:-:mm A

Mymg XNy

(2.9) Z en }: PrCw) = enPr( '}_." c{a})f

My ud

= ﬂnﬁ{u.:‘?ﬁu, Aufe(u)) > curen > G-

Bince ¢p and cy are absolute positive constants, and since My = m,, can be
taken arbitrarily large, this means that the set of all ¢ for which the inequality
(2.1) holds for infinitely many n, has positive measute. By the law of 0 or 1,
this set must have measure 1, and thus Theorem 2 is proved,
2 _.
Taronim 3. Let o(n) be monotone increasing and let us assume that

(3.1) elmass) — p(ma) > e (ma/log log m.)'.

Then a necessary and sufficient condition that'e{n) belong to the lower class s that

(32) i; Pridclomd) = =.

Proor. The necessity follows from Theorem 1, without assuming (3.1).
In order to prove that the condition (3.1} is sufficient, let us assume that g(n)
is monotone increasing and satisfies (3.1) and (3.2). We first notice that
(3.1) and (0.12) imply

(3.3)  elna) — elm) > cul(Mmag logilog masy)! — (ma log log ma)h),

and hence

(8.4) plma) > euldha Tog log m,)'.
From (3.4) and (0.7) it follows eastly that

5 ¥
(3.5) lim Pr{Aa,(e(m) = 0.

Next we notice that we may numﬁa
(3.6) ¢ln) £ (nloglogn)!

for sufbiciently large . Ihderaﬂ otherwise we may &Dnndﬂ' pt{n) =
min (g(n), (n log log n)') instead of ¢(n). Since w(n) = (n log log n)" clearly
satisfies (3.1), ¢(n) satisfies it too. Further, it is obvious that (3.2) is satisfied
by ¢i(n) whenever it is satisfied by ¢(n). Moreover, since ¢y(n) belongs to the
{ £ 2= vy T
B i '1 I' 3

S )
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upper elass, by the corollary to Theorem 1, ¢(n) belongs to the lower cluss at
the same time a8 p(n).

Because of the law of 0 or 1, and because of Theorem 2, it is sufficient to prove
that there exists a constant ¢;; > 0 such that there exists, for any My = m., ,
uuhi"u=m,,|:nu:>-ng}suchthat

(3.7) Pr{ 2 Awflelm)) > cs.
Mg <my SNy

Let & > 0 be a small positive number, which we shall determine later. Then,
by (3.2) and (34), there exists an N such that, for any My = m,, > N, an
No = ma.; (ny > my) exists such that

(3.8) i< T Pridedelmd) <25

My<myS Ny
We shall prove that if 3 is chosen sufficiently small (but fixed), then (3.7) is
satisfied, with the same integers M., and N as in (3.8), by & suitable positive
constant ¢ > 0.
In order to prove this, let us first put

ﬂ{mn} i A-.{i’(m!}} = Au.{fﬁ{mn”' E i'lh,n{‘F[:mn-rf}]
{3'9} My My e S Na

= E[I:Iﬂl{ﬂ > ¢(mn};fﬁ.+.{ﬂ 3 'F[:mn+r}: M < Magr = NU]-
Then [D{m,)} (M, < m. = N,) are mutually disjoint, and

(3.10) Y Dmd= ¥ Anfelmd).

MmNy Myg<me SNy

Let us further put

. )
Dilma) = Am(olma)) = An, (w{m.; 4o (|ﬂ))
(‘3.1 l} OHE 1O .

| i
g H[i:p(ﬂh} < fuult) = plmi) + c_;(log+;m..) ]

Then a simple eomputation will show that”

i¥We have clearly

¢ Ma
PrD(m)) 2 (u )

Pridn (olmal) E—(,ﬂ)
g imal 4 W

where the dash indicates that u runs only over the interval

3 C1: M ¥
elma),  elma) + -2 (lﬂs ok mﬂ) ;

A simple caleulation shows that

() &, ()

which proves (3.12),



426 PAUL ERDOS

(3.12) Pr(Dy(m.)) > cuPr{Am,(elm.))).
Let us put
(3.13) D!fm-n} - -lemn}‘E[i:!#-h—q{i} - o fﬂ.h“) = ul p=1,3, e, 'Mr

where h is a positive integer which we shall determine later. Then it is easy to
see that

(3.14) Pr(Dy(m.)) = 27 Pr(Dy(m.)),
and that ¢ e Dy(m,) implies
(3.15) Smpiol) = Fu (f) < wlmused,

forr= 1,8, v+, h Let us further put

(3.16)  Ds(m,) = Dy(my) Elt: furs () S p(Muie)y Maih < Mppr = Nol.

Then it is clear that Dy(m,) € Dim.) C Aa, (e(m.)). In order to complete the
proaf of Theorem 3, it is sufficient to prove that, if § is chosen sufficiently small

and if & is chosen sufficiently large (but both fixed), then there exists a constant
ey > 0ﬂuﬂh that

(3.17) Pr(Dy(m)) > enPrida,(@lm))).
Indeed, (3.17) will imply
Pri T Awflem)) = P"{.. 2 Dima)

MgmaENg nmin S Ny

(3.18) = X PiDmd) = Y. PrDyimy)

Ma<my, Ny (L

Sen 2, Prida(eimd)) > ea-d,
NyLm, 2y
which means that (3.7) is satisfied by ¢ = ¢;-8 > 0, thus completing the proof
of Theorem 3.
The rest of the proof of Theorem 3 is devoted to establishing the relation
{3.17). For this purpose, put

(3.19) Bl.r{m-} = Dﬂ:ﬂ.} '-J-l,u.':'l’{m--i-r}]r
for all integers r such that m..x < m... S Ny, [t is easy to see that
(3.20) Dy(ma) © Difm) + “§ % Dy (m.).

We shall evaluate Pr(3 ., i< mee,sxe Dac(m,)) by decomposing the sum into

three parts: E-.ncwm rEtmy o ma matp % g B iy o ANA 2 m Yop mu< e r %N -
In the first place, { « Dy (m,) implies
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- I’m‘lﬂ-rft} B Iﬂ-+;{\t] = fm,..g.,.{ﬂ = fn.'r_ﬂ

el = Sh0 = )'
= AN " 2 log log mi,
(3.21) = ( s )} e ( Mo 4
= E Rk log log muse log lug M
f-_!?" _ {0
z (lﬂg iﬂg mﬂ)
Henee

(3.22) Pr(Ds (m,)) £ o Pr{ly(m,)),
whete v = ( [; T = Tty > “""(mg S *D

(3.23) = (‘“““*’"“ » (W(lcg T m.)i))

2 ﬂ'u?" A T

(Masr — Mo}t 2/ log log m,

& &ﬂu?‘ Min s ir — Mah ;
2 Mlogdog m,

Since, on the other hand, ma < Mayr = 2m, implies

r—1
My = Mupn = g'[mum‘_mﬂ-h}

B M r My

< Cnrm = Ecarm,
we have, by (0.7),
(3.25) oy < cwe "

for Mass < Mair = 2m, . Consequently,

(3.26) Pr{ Vs Ds,(ma)) < e Pr(Ds(m.) _gl g

Mgl P g 12 gy
Secondly, ¢ e Dy, (m,) and 2m, < My = M lug m,, imply

Frnt @) = Fugrl® > % Q(lug

@:21) >5 g (wsars 108 10F minsass) — (Miusa log 10g muss)h)

> cw(ma log log mH..-'J'.
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Henee
(3.28) Pr(Dy . (m.)) < B, Pr{Dy(ma))
for 2m. < Me:r S ma log m,, where
B = PrE[tifugy, (1) = faprll) > cx(muyy log 10g mus)'])
= PrlAm.. . (colme. log log m..)')

- - i 1
(3.29) < M_i -, [_ﬂmmm log log m...,..]
m‘m--rr I-m 195, m‘+¢} ml-l-r —_— m.+i

=gy log log sy s tn
S et < (log may™”

On the other hand, the number of m,..'s satisfying 2m, < m... S m, log m,
does not exceed cu(log log m,)'! Hence we have

- . (log log m,)"
(3.30) Pffh{".ﬁgj o ‘uhﬂn.r{mu}.'i < Pr(Dy(m,)) ﬂuwi .

Lastly, { ¢ Dy {m,) and m, log m, < m.3. S N, imply

i
Jraed) = Jmra® > glmas) — olma) — 5 —'”—,;.)

(3.31) log
> @(muy,) = 2my log log ma)'.

Henee

(3.32) PriDy (m.)) < v Pr(Ds(m,))

for m, log m, < My = No, where
¥ = PT{E{!:!-_..,H] = I-\rl-l“] > ffm--r:' T ﬂml '% k‘ ml’lj
= Pr{Amyy mmsr(@(Masr) = 2(my log log ma)*)

Iq o (mt{-l — I'I'l..;.i:l*
@ltair) — 2(m, log log ma)!

(3.33) “p [_Eiwimm}m: Efr_n“ﬂl:ilag m,ij_’]

()}
< & ) — 2(m. Tog log my)

i3 A
xp [_ﬁdr:.}] + SP{:H...J(H;::II log m.) ]

1t follows from (0.11) that the number of m.'s in the interval (z, 22) does not exceed
cw log log . Thus the number of m,’s in the interval (2, = log 7) does not exceed

loglog =

< eallog log =%,
log 2

o log log =
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On the other hand, for sufficiently large n, M., > m, log m, implies

{3'34} w(mn+r] = 2{“[‘, ]ﬂg log mn}] = ‘E'P{Mq.}p},
(3.35) @ (M) (ma log log ma)' < Mg .
Hence

) (Mupr)? [ __ﬂfwlimrﬂ‘]
{3.36) . e = 5= el ) i Hnpr

< tas Prida, ., (elmag))).
Consequently,

Pr( > Dy (m.))

iy LOE Mp s e SN

(3.37) < PriDslma))oem 2, Prida, (elna)))

My<mary =Ny
< 128 Pr(Da(ma)).
Combining (3.26), (3.30) and (3,37}, we have finally
FPr( b Dy.(ma))

Mk <My p 5 Ny

(3.38) : iz e (log log m.)*

< PriDy(ma)) {m-r;’;ﬂ g o EHW + -:sa-i'-ﬁ}.
Henee, if we take h sufficiently large and § sufficiently small, then we have
{3.39) Pri X Dudm)) < 6-Pr(Dima)),

Mg Myt e SN G
where # is a constant with 0 < # < 1. Consequently, by (3.20),
Pr(Dy(ma)) > (1 — 8)-Pr(Ds(m,))
(3.40) > 271 — 8)-Pr(Di(my)) > (1 = 0)-exPr(dn (plm) (by 3.12)
> eaPr{dn, (e(ma))),

which proves (3.17). The proof of Theorem 3 ia completed. i
ComoLLary 1. o(n) = (1/+/2 + &)(n log log n)* belongs to the lower class
for € = 0. :
CoroLLary 2. The erpression (0.6) belongs to the lower class for ¢ = 0.
Proor. Follows immediately from Theorem 3 and (0.7).

4

Tunones 4. Lel ¢(n)/n' be monstone inereasing. Then a necessary and suffi-
eient condition that w(n) belong to the lower class is that

(4.1) Z‘t Pr(d. (plm,))) = =.
We need the following
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Lemmal. LMy <N <My < Ne< .- < M; < N; < - bea zequence
of positive integers tending fo infinily, and let pin) be such that

Tin

]
(4.2) elmaa) — elm) > en ) M:o<m, M SNy

log log m.,
(4.3) wima) > eculma log log m,.}', My my < men =N,
(4.4) 2 Prid. (elm))) > ex.
My <my SNy

Then @in) belonga fo the lower class,

We do not give the proof of Lemma 1, since it can be carried out in the same.
way as In Theorem 3.

Proor or Throrem 4. The necessity of the condition is tlear by Theorem 1,
In order to prove that it is sufficient, let us assume that ¢(n)/n' is monotone
increasing and that (4.1) is satisfied. We shall prove that there exists & sequencs
of integers M, < Ny < My < N:  --» < My < N; < -+ tending to infinity,
which satisfies the conditions of Lemma 1,

If we have

{4.5) elm,) < Yolm, log log m.)t

for all sufficiently large n, then the fact that win) = #¢(n log log )t belongs to
the lower class (see Corollary 1 to Theorem 3), together with-Theorem 2, will
imply that ¢(n) belongs to the lower elass,  On the other hand, if

(4.6) elm,) > Py(m, log log m.)*
for mufficiently large n, then
an e 2 (%2) om) > (14 hg;ﬁwfm,}

by (0.11), and henee

‘F{ n:"

(4.8) thﬁl} = w{m"‘:l ek log log m., 2{) IDE I-UE hn,

Consequently, by Theorem 3, ofn) must belong to the lower class again.

Thus, in order to prove Theorem 4, we have only to consider the case when
there exist two sequences of integers tending to infinity {M;] = [ma]
(t=1,2 - )and {Ny} = {mu} (1 = 1,2, -+ ) such that My < N, <My <
Ny € oo Mp < Nyl one,janil

(4.9) e(M) = olm.,) 2 (M log log My,
(4.10) e(N:) = elma,) = oV log log N
We may assume that

(4.11) elma) < folms log log m.)*

for M; <m, = Ni(le.formi <n=nd{i=12- ).
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Wéahallpm“mthntth:emndmunﬁuflﬂmmlmall etisfied by these [M:}
(¢=1,2--)and [Ni} (i =12, - ++). Since P{Mi}f{ﬁfﬂ}i = o(N)/N} bb'
pasumption, we have fg(log log M;} = ylloglog N.] for ¢ = 1,3, «+4.
Since M3 Ni— « as i — =, it follows t.h&twehave M = N for mﬂiment]y

large 1.
Let now M; < my, < N;. Then

Pridalp(md)) > o E}“il g Hwtmal) e
@

i)
ll]' _.l'_[ol'i i ”m 1ﬂ'ﬂ1
4.1 S B s kT
D “ ok Tog wlb" = {iog Tog m)¥(log my ™
1
. (log m.) L

for sufficiently large 4. Since 2-log My loglog M, < n < 3.log M, log log M,
implies log My < n/log n < 4 log M;, or equivalently M, < ¢"'*" < M},
for sufficiently large ¢, we have

2|
Pr e
m{%ﬂm {Aﬂ‘{¢{m11}l} = .H'.;-l:hElEN; ﬂﬂg m»j”ﬂ
e . 55 1
Wiy ME (log ma ' ™ ap Eigap nt/e’
where p; = log N-log log N;. Thus (4.4) is satisfied. (4.3) is clearly satisfied

with cm = g (4.8) shows that (4.2) 15 also satisfied. This completes the proof
of Theorem 4.

(4.18)
-

b
TaeoreM 5, Lef ¢ln) salisfy
(5.1) e(n) > caln log log n)t,
(5:2) 3 Pridmdo(ma)) = =.

Then ¢(n) belongs to the lower class.

To prove Theorem 5 we need the following

Lemma 2. Let p(n) be monotone increasing, and let |m.| (i = 1,2, -+ ) bea
subsequence of {mi] (n = 1,2, .-- ) such that

(63)  elmas,) = elma,) + cal(ma,,, loglog m,,,)! — (m,, loglog m,)")
(5.4) g Pr(dn,, (plm))) = =
Then @(n) belongs to the lower cluss.

Since the proof of Lemma 2 can be carried out exactly as in the proof of
Theorem 3, we omit the proof.
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Proor or Tugorem 5.  As in the proof of Theorem 3, we may assume that
(5.5) w(n) = (nlog log n)*

for sufficiently large n. We shall find a subsequence |m,,| (i = 1,2, ---) of
[me] (n = 1, 2, --- ) which satisfies the conditions of Lemma 2, For this
purpose we classify the integers m, into two classes, The first cluss T consists
of all integers m,, for which

(5.6) elmg) = e(m,) + e((mg log log my)! — (m, log log m,)")

for all ¢ & p, where e is o positive constant with 0 < e < ¢ which we shall
determine Inter. All other integers m, will belong to the second class II. We
shall prove that, if wedenote by [m ) (i= 1,2, «-- ,m,, < m,., ) the integers
of the class 1, then this sequence satisfies the conditions of Lemma 2. Indeed,
(5.3) is elear from (5.6). In order to prove (5.4) for the m.,'s of the class I,
let us denote by 11, the set of all integers my, of the class IT such that m, < m,, and

BT)  plmy) < elm,) + «((ms, loglog m, ) — (m, log log m,)h.

By definition, for each m, of the class 11, there exists an m, (m, > m,) such
that

(5.8) plmg) < p(m,) + «((m, log log my)! — (m, log log m,)").

Because of (5.1) and the relation € < g, there exists, for each m, of II, &
largest integer m, (m, > m,) satisfying (5.8). This m, clearly belongs to I.
Hence we have 3 o I1, = II (II; are not necessarily mutually disjoint).

Thus in order to prove (5.4), we need only prove that there exists o constant
¢u > 0 such that

(5.9) _'E'm Pridg,(elmy))) < e Pridu, (elma))).
For this purpose we shall first show that
(5.10) M., < cum,

for all my, « [T, , where ¢y is independent of ¢ and p. Indeed, if (5.10) is false,
we have

elma,) < elm,) + el(ma, log log m,)! — (m, log log m,)")
(5.11) < (my log log mp)* -+ em., log log m.)!

1 i
o g :
(v"t:n+‘ (my, log log m.,)

and this is 0 contradietion to (5.1) if ey is sulficiently large.
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By (5.5), (6.7) and (5.10), if m, = ma,_& € I1;, then we have

i
PT{AW{QE{M’}” < ng{”;:’;} g_z{'?{“l'n"f"j

=2 VN
(log log m, )}
- [_,zhﬂfm..} — e{(ma, log log ms,)! — (m, log log m,,}*}}‘:l

it
{5.12) < 4
(log log my)t
-exp |:'_2[¢[m”}}‘ = 4‘¢P{mnq]f{m-¢ lﬂE IDE m,i}‘ == {m, lgg ll:'lg; .mn}i}:l
.
Mng — & ca]og e

where

TMng

. 1 o [(w{m.‘}}”

=1 (ﬁw{?ﬂq)}’ = 2!19{1‘1‘1-,}“1?1“‘ ltlg lﬂg m*[}* — {m, l{)g ],ug mp}l}:l

Mg
My — B
log log mx,

< exp [{'P{:;NJ }'

- (elma,))* — 2ep(ma,) ((m, log log m.)! — (m, log log m,)")

(5.13) e
.
'(‘ Hik lm)}

e [2%} ((ma, Tog log ma)! — (m, log log m,)")

_ keale(ma)*

ma, log log ma,

2ee(mn) (J Mo )“ culelms,))* ]

< EXp
My of log mia, s, log log ma,

< exp [(2eccrem — corcha) kL
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Henee, if we take « sufficiently small, then
(5.14) PR
with & positive constant ¢e . Hence

X Prldn(plm) < e Pridm, (olma)))- 2 6"

mpeﬂi

(5.15)
O Pl o)

1 — g i
which proves (5.9). This completes the proof of Theorem 5.

Before concluding this chapter, let us add some more rezulls without proof.

1). If e(n) is monotone increasing and belongs to the lower class, then
e(n) + ¢ (n/log log n)* belongs to the lower elass for all c.

This result is the best pessible. For, if ¢(n) — =, then we can find
a monotone function ¢(n) belonging to the lower class such that ein) -+
¥(n){n/log log n)' belongs to the upper elass,

2). If ¢ln) i3 monotone increasing and belongs fo the lower cluss, then
eln) + eln/p(n)) belongs to the lower class for all e, Since we can always assume
that o(n) < (n log log n)*, 2) is slightly stronger than 1).

3). Let win) be monotone increazing, and suppose that if belongs o the upper
class. Then for almost all {, there exist only finilely many n such that for some
m < m, | Julf) — fmu} | > ‘i"':ﬂ}*

4). For almost all t, we have

L
pIEAC)
5.18 limsup —=m =
®:16) n—-lup].“l log log n'
27N, 2
Professor J. L. Doob suggested that if m < ne < +++ 15 & sequence of integers
with nis/ny > ¢ > 1, then for almost all 2,

{5.17) lim
peaen

Indeed, it is not difficult to show that (5.17) holds. In fact, the condition
fign/me > ¢ > 1 can be weakened, but it is necessary that n; tends to infinity
with a ecertain gpeed (quicker than £).

5). There exisis a continuous strictly deereasing function (z) defined for 0 =
z = 1, with ¢(0) = 1, ¥(1) = @, such that, for almost all !, the upper density of
the set of n's for which

(518) ROES (‘-'“*Llﬂgﬂ)'

2
is exactly ()"

11 This problem waa suggeated by W, Ambrosa.
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]
In this final chapter, we shall construet an inecreasing function ¢(n) such that
6.1) g Pridn(sm)) = =,

and nevertheless ¢(n) belongs to the upper elass. This shows that the converse
of Theorem 1 & not true,

We put
(6.2) — k=1,2-,
and define ¢(n) as follows:
(6.3) wln) = log k-, forppy < n S pe.

It follows from (0.11) that the number of m,'s satislving 4 < M =
s Zeg loglog pa and henee 262", Consequently, from (0.7) we have
(6.4) Y. Pridafe(md)) > L N0 0% 2 cu > 0.
Ira<mat s klk
Since this is true for each k, (6.1) is proved.
Denote now

{6.5) My = Eil:l;lﬁxnf.{l} > log k-v'm).

~ In order to show that ¢(n) belongs to the upper class, it is clearly sufficient
to prove that

(6.6) 3 P < =.
It is easy to see that"
(6.7) PriM.) s 2Pr(Blt: f(8) > log kv/pul.

i In general, we have
PriEli: 1:::.;,1‘.“:- > &) = 2 PeiElL: £,l1) > 2]).
Indeed, we have
PriEit: max falt) > 2l) = PriEit: f,(t) > =)
1Z2nsEp
=1
-+ t PriBi: fi() & o <+« fault) S 2 full) > =, folt) & o)

= Pr;;:.lz.r,m > =)

+§ﬁ{zu: Sl 8 2 -, faalt) 3 2, 00} > 2 fp0) 2 200 = 31)
= PriBlU: (1) > =])

+ E PriBlit: () S =, -, fausl) S 2, 1ul0) > 2, f,8) > 2D

=2 PrBli: flt) > al).
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Thus from (0.7} we have

w . i - r 5 L _'!it“ t}l : -1
(6.8) E PriMy) = 2.6 E ik < m,

which proves (6.6),
My indebtedness to my friend 8. Kakutani is very great. In fact, he wrote
the whole paper aflter listening to my rough oral exposition.

URIvERSITY OF PENNSYLVANIA
PHILADELFHEA, P4,
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