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Ramanujan sums and almost periodic functions
by
P. ERDOS, M. KAC, E. R, van KAMPEN and A. WINTNER (Baltimore).

Introduction. Several classical formal trigonometrical
expansions of the analytic theory of numbers have recently been
shown!) to be periodic or almost periodic Fourier series of the
functions which they represent. The object of the present paper
is to prove a corresponding result for an extensive class of
multiplicative arithmetical sequences,

In particular, it will be shown that the celebrated formal
trigonometrical series of Ravanujan?) are almost periodic Fourier
series in the sense of Besicovircu?). Hence the Ramanujan coeffi-
cients will turn out to be Fourier averages which vanish fer in-
commensurable values of the frequency parameter, the almost
reriodic functions in question being always limit-periodic. It should
be emphasized that the fact that Ramanujan’s trigonometrical
expansions turn out to be Fourier expansions leads without any
further device to his explicit formulae, if one writes down the
Fsurier average representation of the coefficients.

Although the arithmetical functions f(n) will only be consi-
dered for n=1,2,..., one can realize the usual assumption of
the Besicovitch theory by placing f(— r) =f(n) for n=1,2,...

1) A, Wintner, Amer. Jour. Math. 57 {1935) p. 534—538; Duke Math.
Jour. 2 (1936) p. 443—446; Amer. Jour. Math. 59 {1937) p. 629— 634 P. Hart-
man and A. Wintner, Travaux Inst, Math. Thilissi 3 (1938) p. 113—119; P.Hart-
man, Amer. Jour. Math. 61 (1938} p. 66 —74,

%) S. Ramanujan, Collected Papers, Cambridge, 1927, p. 179 —199.

% A. S. Besicoviteh, Almost Periodic Functions, Cambridge, 1932,
p. 91112,
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and f(0) =0 (the multiplicative character of f then remains pre-
served). It is understood that a class (B') of functions f(n) which
are defined for integers may be introduced either directly) or
by considering the step function f(f) which has the value f(n)
for n<{t<n-+1.

1. By a multiplicative function f is meant a sequence f(n)
n=1,2,3,... for which f(n, n,) = f(n,} f(n,) whenever (n,, n,)=1,
and f(n) == 0 for at least one n (so that /(1)=1). In order to
simplify the formulae, only those multiplicative f(n) will be con-
sidered for which
O =), ie [B=/E)=fF)=..., (fD=D),

Pl

where the p denote prime numbers. An f(n) which satisfies (1)
will be called strongly multiplicative. A classical instance of (1) is

@ fy =20 — 2=l 20,

no pin P
(@ = Euler’s function).

For any f(n) and for any positive integer k, put

fE@ =1 or f(n)=f(p,) according as

&) -
n40 or n=0 (mod p),

where p, is the k-th prime; and put

'L‘ ’
@  f=TIf" ), sothat f,(n) = f{ f(p), where p <p,.
Jj=1

nip

According to (3), the function f(k) (n) of n has the period p, and
possesses the Fourier expansion
b f(P;;)_i e

5) f(k}(n)_—_-l P O R (Q?Iipm n),

k m=0 &

which is, in fact, nothing but the formula of equidistant trigono-
metrical interpolation. According to (4), the function f,(n) of n

#) Cf. I Seynsche, Rendic. Circ. Math. Palermo 55 (1931) p. 395—421,
where Bohr's uniformly almost periodic case is gonsidered.
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has the period P=p,p,... p,_, p, and possesses, in view of (4)
and (5), the Fourier expansion

s f(p) —1 m

g>1 15m<g
where ¢, = H(I-I'Z-(—Pt——l)
PSPE P

It is understood that the denominators in the product occur-
ring in (6) are compensated by the factors of ¢,.

2. For a function g = g(n) defined for n=1,2,3,..., put

n

) Migy=Mig)} =lim = Sg(m),

m==1
if this mean value exists.
If f(n) is strongly maultiplicative and

® P *i_Tf‘fi' <,
then
© ey = I1 (1— =12),

In fact, it follows from the Mébius inversion formula that
FO+ oo f ) = 2 F [ 7], where F@ = ITa—7(on.
P

On the other hand, it is clear from (8) and from Euler’s factori-
zation that

k) F (k) 1— f(p)
ZM_(T——]ZH(1+———-——p ).
Hence, M{f(n)} exists and is represented by
mifey = 3 OFO _ (- 1=10)

3. A corollary of (8) and (9) is that for a strongly multi-
plicative f(n) & O one has
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.1 = 1—f{p)
2 en ,z'mf(m) = pf) )

11— f(p)| f(p)l
2 e

(10)

In fact, on writing Jﬁ for f(p) in (8) and (9), one obtains (10),

since

(10 bis) if - éa’"“ @, then also | % < -

Similarly, if f(n)' denotes the I-th power of f(n), then

(1) M{f(n)} = H(l— 1__;(P)J)’ ifzw; e,

where / is any real number. In fact, (11) follows from (8) and
(9) by writing f(n)' for f(n). Since

if i- zn; a,— «, then also

,_ =1
(11 bis) 14+
i z"ma-—rafor every A> —1,

it follows from (11) that

n—rw R,

ifZ'l—l:g—(M <o, A>—1,

Clearly, (10) may be interpreted as the limiting case 4= —1.
Needless to say, the relation belonging to any 22> —1 is an
essentially weaker statement than is (9) itself. In fact, the con-
verse of (10 bis) or of (11bis) is only true on Tauberian as-
sumptions.

As an illustration, consider the example (2); so that
f(p)=1—p~'. Thus, (10) is applicable and goes over into
Lanpau’s relation
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1 42)E&0B)
i log’n 2 Gm) — )
n(1—p°)

since 7 (1+ p(p—l)) == Ta—p H(l—p—a);

while (11) is applicable for — o </ <+ and gives ScHur’s
relation
2 v _ _Egly
wfl— )} = H - =Y

for every real / (and, as seen from the proof of (9) or (11), for
every complex / also?)).

4, For every strongly multiplicative, positive f(n), let
f(n), /7 (n) denote the strongly multlpllcatlve, positive functions
which at an arbitrary n— p attain the values /T (p) = max (1, £(p)),
f (p)=min (1, f(p)), respectively. Then (2) shows that

(12) f()=f"() /™ (n); (12) 0<f~ () <1<fT(m);
while (4) clearly implies that

a3) ff=fim), 70 <fm);

3,) f—f=0"—FF + =%

Notice that either of the functlons = 2 is uniquely determined by
fand &, i. e., that (f7) = (fk

Using these notations, it will be easy to deduce from (9)
the following theorem:

Every strongly multiplicative, positive function f(n) which
satisfies (8) is almost periodic (B); furthermore,

) E. Landau, Gottinger Nachrichten, 1900, p. 177—186; the result of
1. Schur was published by I. Schoenberg, Math. Zeitschrift 28 (1928) p. 194.
It should be mentioned that the corresponding result which belongs to (28)
below (H. Davenport, Berliner Sitzungsherichte, 1933, p, 830—837) may also be
established by the above method.
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In fact, it is clear from (7) and (6) that M{f} =c¢,. Since
¢t in (6) was defined as the &-th partial product of the infinite
product (9), it follows that

(14 bis) c,= M{f,} — M{f}, as k— .

Hence, (14) is certainly true if either f(n) > £, (n) or f(n) <f, (n)
for every n and k. It follows therefore from (13) that

15) M{fT—f1}— 0 and M{|f—f7|}— 0, as k—> .

But the function (6) of n is periodic for every f, hence also for
73 so that either of the functions fik of n is periodic for every k.
It follows therefore from (15) that either of the functions /™ (n)
is almost periadic (B). Since (12,) shows that f ™ (n) is a2 bounded
function, it follows from (12,) that f(n) is almost periodic {B).

In order to prove (14), notice first that, by (13,) and (13,),

(15bis)  M{f—f <M Z— D +MUGT—F D7)

The sum M + M on the right of (15 bis) may readily be written
in the form 2M{f f} — M{f} — M{f}. It follows therefore
from (14 bis) and (15 bis) that in order to prove (14), it is suffi-
cient to show that M{f, fTY—M{f}, as k— . But this is

obvious from (9) and from the definitions of £ and f.

5. The almost periodicity (5) of f(n), proved in § 4, im-
plies that the n-average M{f(n) exp 27iln} exists for every
real 2. It turns out that this Fourier coefficient vanishes for
every irrational 4; so that f(n) is limit-periodic (grenzperiodisch);
more explicitly, the Fourier series (B) of f(n) is

18) [~ Mify+Mify 2 3 IT P cos 22 ),
g>1 m plg f(P) q

where the first (exterior) summation is over all quadraiffrei ¢ >1,
and, if ¢ is fixed, the index p runs through all prime divisors p
of g, while m through the @(g) values which satisfy (m,q) =1
and 1< m <gq.

In fact, (16) follows from (14), (14 bis) and (6), since P,
in (6) was defined as the product of the first & primes.
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The restriction of the first summation index of (16) to
quadratfrei ¢ >1 may be eliminated, if one introduces the M&bius
function u(r), where r=1,2,3,.... In fact, (16) may then
clearly be written in the form

@) S~ uip S e il

r=1
if ¢ (n) is an abbreviation for the finite sum
c.(n) = Dcos (27 —? n), where (my,r)=1and 1 <m <r;
" ¢, (m) =1.

(18)

Since the @ (r) angles which occur in the sum (18) are symme-
trically placed, the sum which one obtains by writing sin for cos
is 0; so that

c,(n) =2exp(2ﬂ:i%n), where (myr)=1land 1 <m <r;
’ c,(n) =1.

(18 bis)

Thus, the c (n) are precisely the Ramanujan sums, and so the
Fourier series (B) of f(n) is identical with Ramanujan’s formal
trigonometric series for f(n). The coefficients of the series

19) f@) ~ 3a.c(n)
r=1
are
(20) a=a ()=M{f}u( gm r=1,2,3,..),

by (17); while the expansion functions (18) of (19) may be ex-
pressed in terms of the Euler @-function and the Mdbius u-func-
tion as follows®):

@) (7)) =2@nr(7), where t =(m,n);

(this directly implies®) that ¢ (n) is a real integer and that it
represents, for fixed n, a multiplicative function of 7).

8 O. Holder, Prace Mat. Fiz. 43 (1936) p. 13—23.
Studia Mathematica. T. IX. 4
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6. According to (16), the frequencies (Fourier exponents)
of the almost periodic function f(n) are rational numbers between
0 and 1 (or, rather, between — 1 and 1). Let the terms of the
Fourier series (16) be ordered in the Ramanujan fashion (17)—(18),
and suppose that each of them actually occurs, i. e., that none
of the coefficients (20) of (19) vanishes. Then the frequen-
cies of f(n) are uniformly distributed on the interval [0,1] (or,
rather, [— 1, 1]). This may be proved as follows:

Since | (m)| <1, while @ (m) — o« as m — «, HoLper's
formula (21) implies an observation of Ramanujan, according to
which ¢ (n) = 0(1), when either r is fixed and n — 0, or n is
fixed and r — . In particular

(21 bis) lim 2'—((:))- = 0 for every fixed n>1.

Now, (21 bis) is equivalent to the equidistribution of the frequen-
cies of (19).
In fact, let S denote, for any fixed r3>1, the sequence

® % ®
m m m
(r) 1 2 P{r)
(22) STy — P —

r r o r

of those @(r) fractions m[r whose numerator m satisfies the con-
ditions (m, ) =1 and 1 <<m <r. And let ¢ (x), 0 <x <1, de-
note the distribution function of the @(r) fractions contained
in S”. Then (18 bis) shows that the ratio occurring on the left
of (21 bis) is the n-th Fourier-Stieltjes coefficient of ¢_(x), i. e.,
that

c,(n)
@ (r)

1
(22 bis) fexp 2ninxdo (x) = (n>1).
0

Thus it is clear from the criterion of WevL for equidistribution
(mod. 1), that the content of (21 bis) may be expressed as follows:
The ordered infinite sequence of fractions which is obtained by
writing r=1,2,... in (22) is uniformly distributed on the inter-
val [0,1]. This fact, which is equivalent to a result of PoLva
may be obtained without the Fourier analysis (22 bis) of the,



Ramanujan sums. 51

sequence (22) also, and contains the corresponding fact concer-
ning the ordered infinite sequence of Farey sections?).

7. The considerations of (§ 4 and) § 5 may be modified in
such a way as to lead from (B) to (B%). To this end, one merely
has to replace the condition (8) by the pair of conditions

2
(23) Z%’”ﬂ <w, 2”@[’7_”<w_
Then one obtains the following theorem:

A strongly multiplicative, positive f(n) which satisfies (23)
is almost periodic (B®) and has the Fourier expansion (16) or
(19), (20); furthermore,

(24) M{(f_fk)z}_" 0, as k— w,

and the Parseval relation takes the form
(25) My =2 o@a’.
r=1

In fact, if (23) is satisfied, then (4) shows that (9) is appli-
cable to any of the three functions f(n)z; fk(n)z; f(@) £, (n).
Thus, the three averages M{f°}; M{fkg}; M{ff,} exist and have

the respective values

2 2
Ta—2=1, jra- =0,

p P=pL

o~ =19, [10-1=1®),

P=rp »>pL

Hence, M{f(n)’} + M {f (n}’} —2M {f(n) f,(n)} — 0, as k—— .
This proves (24). Since f, (n) is, by § 1, a periodic function of n,
it follows from (24) that f(n) is almost periodic (5. Finally,
(25) is clear from (17), since (19) and (18) show that every
amplitude (20) occurs in (17) exactly @(r) times.

") Cf. G. Pélya and G. Szeg?d, Aufgaben und Lehrsitze, Berlin, Sprin-
ger 1925, chap. VIII, nos. 263—264 and chap. II, nos. 188—189.
4*



52 P.Erdés, M. Kac, E.R. van Kampen and A, Wintner.

As an illustration, consider the example (2). Then fp)=1—p~ %
so that (23) is satisfied, and (20) shows that the coefficients (19) are

26) a=M{fu)E—D7", (f@n) =0@)n).

plr

8. The following theorem may be considered as the ana-
logue to Bomr’s theorem concerning uniformly almost periodic
functions with linearly independent exponents:

A strongly multiplicative positive function f(n) is uniformiy
almost periodic if and only if

(27) 21—f(p)| <.

The sufficiency of condition (27) is obvious, since (27) implies
that the periodic functions (4) tend to f(n) uniformly for all n,
as k— . In order to prove the necessity of (27), notice first
that one can assume f(p) <1. In fact,

I/ f(p) <o (and therefore I (f(p) —1) <x),

(p) >1 fipy>1

since if JJ/f(p) = o, then f(n) cannot be bounded. Suppose then
flp)>1

that f(p) <1 and let L be a number such that every sequence

of L consecutive integers contains a translation number belonging

to 1/2. Suppose further that (27) does not hold. Then J/f(p)=0.
Hence, there exist indices k,—=1< k,<... <k, satisfying

1 -
f)f (P flpy, ) <5 for j=0,1,..., L—1.
But there obviously exists an integer NV such that
N+j=0 (mod pkjpkj+1"'ij+1) for j=0,1,...,L—1.

Hence, f(N+j) <+ for j=0,1,..., L—1. This contradicts
f(1)=1, since there must exist at least one j; (0 <j,<<L—1)
such that [f(N+) —f(1)| < -

It may be mentioned that the proof could be modified in
such a way as to dispose of the restriction f(n) > 0.
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9. It is clear that all of the above considerations remain
valid if one omits the condition of sfrong multiplicativity and
replaces, for the resulting class of unrestricted multiplicative
functions, the conditions formulated above by corresponding con-
ditions. This holds, in particular, for the functions

(28) f(n) = g“(:), (0, (n) =11 d"),

n din

whose formal trigonometrical expansions (which now turn out to
be Fourier expansions) were explicitly determined by Ramanujan.

{Received 70-th 5. 7939).

PananyamoBi cymm Ta Maiizke mepiopmumi ¢yurmil
0. €pgeur, M, Kam, E. P, san Kaumer i A. Binrmep (Baariyop).

{Pesmome)

Bigome Tpuromomerpuune PaMaHyaAHOBE DOSTODHeHHA HO-
nape Ges MOBeLeHHA OJEPEYETBCH AE poaropHenna Dyp’e mailme
nepioguyanx Pymrni# Besixosma. Teopernsmo-mmcersaa Qymrrmia
Hexall Gyme CHIBHO-MyIbTHINIIKATHBHA, TOGTO Hexall Maé Bia-
crupiers (1). BmaBuiaerscd, mo BoHa ToXli Maifxe meplogumaHa
i rpammwmo-mepiogmara. Boma Mae posropmemma B pajy Pyp'e.
Ile posropHerEa imemTmyme posropEeEE (19), me ¢ (n) Pama-
EysuoBi cymu (18 bis), a a, Bmsmaveni wepes (20). Pyuruii c (n)
MOXHa IPeJCTABATHE 3a momomorowo Eimepopol ¢pymrmii @ i Me-
Giycosoi p, ag me umraeMo B dopmymi (21). Taxmm cmocoGom
IDOEKOHAHO imeHTH}iramiio 060X PO3rOpHEHS.

Otanrit KP 643.




