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Introduction, Several ciassical forrfial trigonometrieaj. 

exparkons of the analytic theory of numbers have recently been 
shown 1) to be periodic or almost periodic Fourier series of the 
functions which they represent. The object of the present paper 
is to prove a corresponding result for an extensive class of 
multiplicative arithmetical sequences. 

In particular, it will be shown that the celebrated formal 
frigonom~fricd serifs of RAMANJJAN 2) are almost periodic Fou&v 

series in the sense of BESICOVITCH~). Hence the Ramanujan coeffi- 
cients will turn out to be Fourier averages which vanish fcr in- 

commensurable values of the frequency parameter, the almost 
r,eriodic functions in question being always limit-periodic. It should 
be emphasized that the fact that Ramanujan’s trigonometrical 

expansions tern out to be Fourier expansions ieds without any 
further device to his explicit formulzq if one writes down the 
F3grier average representation of the coefficients, 

Although the arithmetical functior;s f(~) will, only be consi- 
dered for n=1,2,..., 0p.e can realize the usual assumption of 
the Besicovitch theory by placing p(- C) ==f(n) for R = 1,2, -. c 

1) A. Wintner, Amer. Jour- M~xth. 57 (1935) p. 534G-538; Duke Math. 

Jaw. 2 (i936) p. 443-446; Amer. Jour. Math. 59 (1937) p, 629-634; P. Hart- 
man and A. Wintner, Travauxinst. Rlsth.Tbilissi3 (1938) p. 113-114; P.Hart- 

man, Amer. JOUP. Math. 61 (1938) p 66 -74. 
*) S. i: amanu jan, Co!lected Papers, Cambridge, 1927, p. 179 -199. 

‘) A. S. B e s i c o v i t c b, Almost Periodic Functions, Cambridge, 1932. 

p. 91-112. 
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and f(0) = 0 (th e multiplicative character of j’ then remains pre- 

served). It is understood that a class (B’) of functionsf(n) which 

are defined for integers may be introduced either directly 4) or 
by considering the step function f(f) which has the value f(n) 

for n,<t<n+l. 

1. By a multiplicative function f is meant a sequence f(n) 

n=1,2,3,... for which f (n, n,) =f(nl)f(n2) whenever (nl , nJ = 1, 

and f(n) + 0 f or at least one n (so that f(1) =I). In order to 
simplify the formulae, only those multiplicative f(n) will be con- 

sidered for which 

(1) f(n) = kTf(p), i. e. f(p) =f(p2) = f (p”) = . . . , (f(l) =l)# 
P:n 

where the p denote prime numbers. An f(n) which satisfies (1) 
will be called strongly multiplicative, A classical instance of (1) is 

(CD = Euler’s function), 

For any f(n) and for any positive integer k, put 

fCk’ (n) = I or f (k’ (n) = f (p,) according as 

n +O or n-0 (mod p,), 

where pk is the k-th prime ; and put 

(4) f&(n)= hf”‘in)s SO that f,(n) = JBjlp), where P < pke 
j-1 n;iJ 

According to (3), the function f”‘(n) of n has the period pk and 
possesses the Fourier expansiotl 

which is, in fact, nothing but the formula of equidistant trigono- 

metrical interpolation. According to (4), the function fk{n) of R 

4) Cf. I. Se y n s c h e, Rendic. Circ. Math. Palermo 55 (1931) p* 395-421, 

where Bohr’s uniformly almost periodic case is considered. 
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has the period Pk=p1p2 . . . pkwlplr and possesses, in view of (4) 
and (5), the Fourier expansion 

6) fktn) = ck f ck q< ( sml g ’ “) - 1 
,?>I 1”;G 

f(P)---l+p 
cos (2rr 7 n), 

where ck= 17 (1 + f(pb- ’ ) , 
PsPk 

It is understood that the denominators in the product occur- 
ring in (6) are compensated by the factors of ck. 

2. For a function g = g(n) defined for n = 1,2,3, ., . , put 

(7) M(g) = JfCg(n)l = .Lmm -$ &rhd9 1 
m=l 

if this mean value exists. 

If f (n) is strongly multiplicative and 

(8) 
z 11 -f(P)1 <oo, 

P 

then 

19) M{f(n)} = n(1- l-L(P)). 

In fact, it follows from the MZbius inversion formula that 

f( l) + l .  .  +f(n) = EP w FW [$J, where p(k) = IJU-~(PN. 

On the other hand, it is clear from (8) and from Euler’s factori- 
zation that 

Hence, Mu(n)} exists and is represented by 

M(f (n)) = 2 fJ (kJkF(k) = 17 (I- l-f(P)). 

3. A corollary of (8) and (9) is that for a strongly multi- 
plicative f(n) =/= 0 one has 
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In fact, On writing -&$ for f(p) in (8) and (9), one obtains (lo), 

since 

(10 bis) if + iam+ 01, then also & 2 2 ----f Q: . 
??I=1 m=l 

Similarly, if f(n)’ denotes the. I-th power of f(n), then 

(11) M{f(nf}=== JJ(Y.- 1-L(P)z), if 2 ‘i-~‘P)z’ <00, 

where I is any real number. In fact, (11) follows from (8) and 
(9) by writing f(n)’ for f(n). Since 

then also 

(11 bis) 7Il=l 
1Sk n 
,1-v c maam-+ a: for every L > - 1, 

m=l 

it follows from (11) that 

lim & 2,2-f (m)L & 
n-+m n m=l 

(I- qfq, 

if z: I ’ --f(P)’ I <a, a> -1. 
P 

Clearly, (10) may be interpreted as the limiting case 1, = - 1. 
Needless to say, the relation belonging to any L>, - 1 is an 
essentially weaker statement than is (9) itself. In fact, the con- 
verse of (10 bis) or of (11 bis) is only true on Tauberian as- 
sumptions. 

As an illustration, consider the example (2); so that 
f(p) = l- p-l. Thus, (10) is applicable and goes over into 
LANDAU’S relation 
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lim Li’-= C(2) C(3) 
n-+m log R m=l @Cm> 56) ’ 

since J7je ( 1-k 
1 I?(1 -p-6) 

P (P -1) 1 = n(l - p-y q1 - p-“) ; 

while (11) is applicable for - 00 < I <+ CO and gives SCHUR’S 
relation 

M{(y) = pjy(l- $ (l- +,‘, 

for every real I (and, as seen from the proof of (9) or (ll), for 

every complex 2 also “)). 

4. For every strongly multiplicative, positive f(n), let 

f+(n), f-(n) denote the strongly multiplicative, positive functions 
which at an arbitrary R =p attain the values f+ (p) = max (1, f(p)), 

f-(p) = min (1, f(p)), respectively. Then (2) shows that 

WJ f(n) =f+m f-b>; (12,) 0 <f--W <I <f+(n);- 

while (4) clearly implies that 

(13,) ff(n)>f$W, f74<fJnh 

(13,) f-fk= (f--f,)f++ (f+- f,)fT* 

Notice that either of the functions j”, is uniquely determined by 
f and k, i, e., that Cf Yk= (fk)*. 

Using these notations, it will be easy to deduce from (9) 

the following theorem : 

Every strongly multiplicative, positive function f(n) which 

satisfies (8) is almost periodic (B) ; furthermore, 

04) M{jf-f,j}-0, as k-m; 

6, E. Land au, Giittinger Nachrichten, 1900, p. 177-186 ; the result of 
I. Schur was published by I. Schoenberg, Math, Zeitschrift 28 (1928) p. 194. 

It should be mentioned that the corresponding result which belongs to (28) 

below (H. Davenport, Berliner Sitzuagsbkkhte, 1933, p. 830-837) may also be 

established by the above method. 
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In fact, it is clear from (7) and (6) that Mv,} = ck. Since 

ok in (6) was defined as the k-th partial product of the infinite 
product (9), it follows that 

(14 bis) ck= M{f,)- M(f), as k -+ oo. 

Hence, (14) is certainly true if either f(n) >f, (n) or f(n) < fk (n) 

for every n and k. It follows therefore from (13) that 

(15) M{(f+- f:I)-+O and M{]f--f,/}-0, as k--+a,. 

But the function (6) of R is periodic for every f, hence also for 

f’; so that either of the functions f 5 of n is periodic for every k. 

It follows therefore from (15) that either of the functions f*(n) 
is almost periodic (B). Since (12,) shows that f-(n) is a bounded 

function, it follows from (12,) that f(n) is almost periodic (B). 
In order to prove (14), notice first that, by (13,) and (13,), 

315W MClf-ff,I},<M{OC,-ff-)f’}+M{(f-t-ff-f;)f-}. 

The sum n/l+ M on the right of (15 bis) may readily be written 

in the form 2M{f, f+} - M(f) - M(f,}. It follows therefore 

from (14 bis) and (15 bis) that in order to prove (14), it is suffi- 

cient to show that M{f k f+} - .ld{f}, as k --+ co. But this is 
obvious from (9) and from the definitions of f k and f+. 

5. The almost periodicity (b’) of f(n), proved in 8 4, im- 

plies that the n-average M{f (n) exp 27riAn) exists for every 
real h. It turns out that this Fourier coefficient vanishes for 

every irrational 1; so that f(n) is limit-periodic (grenzperiodisch) ; 

more explicitly, the Fourier series (B) off(n) is 

where the first (exterior) summation is over all quadraffrei q >l, 

and, if p is fixed, the index p runs through all prime divisors p 
of q, while m through the CD (9) values which satisfy (m, q) = 1 

and l<m <q. 

In fact, (16) follows from (14), (14 bis) and (6), since Pk 

in (6) was defined as the product of the first k primes. 
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The restriction of the first summation index of (16) to 
quadratfrei q > 1 may be eliminated, if one introduces the MGbius 
function p(r), where r = 1, 2, 3, . . . . In fact, (16) may then 
clearly be written in the form 

if c,(n) is an abbreviation for the finite sum 

c~(~)=~cos(~~~~R), where (m,r)=landl<m<r; 
w m 

Cl (n) = 1. 

Since the d,(r) angles which occur in the sum (18) are symme- 
trically placed, the sum which one obtains by writing sin for cos 
is 0; so that 

c~(n!-~exp(2ni~n),where(m,r)=landl.~m<~; 
(18 bis) II 

c*(n) = 1 . 

Thus, the c,(n) are precisely the Ramanujan sums, and so fhe 
Fozzrier series (B) of f(n) is identical with Ramanujan’s formal 
trigonometric series for f(n). The coefficients of the series 

09) 

are 

f(n) - ~arc,b4 
r=l 

t20) arGa,(f)=~{f)F~(r) FfCp;Ir+p (r=1,2,3,...), 

by (17); while the expansion functions (18) of (19) may be ex- 
pressed in terms of the Euler @-function and the M6bius pu-func- 
tion as follows “): 

t21) c,(n) @ ( k) = Q(r) p (f) , where t = (m, r) ; 

(this directly implies 6) that c,(n) is a real integer and that it 
represents, for fixed n, a multiplicative function of r). 

6) 0. HZ I d er, Pram Mat. Fiz. 43 (1936) p. 13-23. 

Studia Mathematics. T. IX. 4 



50 P. Erdiis, M.Kac, E. R. van Kampen and A. Wintner. 

6. According to (16), the frequencies (Fourier exponents) 

of the almost periodic function f(n) are rational numbers between 
0 and 1 (or, rather, between - 1 and 1). Let the terms of the 

Fourier series (16) be ordered in the Ramanujan fashion (17)-(18), 

and suppose that each of them actually occurs, i. e., that none 
of the coefficients (20) of (19) vanishes. Then the freqzzen- 
ties of f(n) are unyormly distributed on the tnterval [0, l] (or, 

rather, [- 1, 11). Th is may be proved as follows: 

Since 1 p (m) / < 1, while di (m) - co as m -+ 00, HOLDER’S 
formula (21) implies an observation of RAMANUJAN, according to 

which c,(n) = O(l), when either r is fixed and n - co, or n is 
fixed and r - w . In particular 

(21 bis) 
c (n) 

lim CD(r) 
L = 0 for every fixed n > 1. 

r-+m 

Now, (21 bis) is equivalent to the equidistribution of the frequen- 

cies of (19). 
In fact, let S”’ denote, for any fixed r >/l, the sequence 

cw 
s”’ : mf’ m:” ,..‘, mg, 

r ’ I 

of those B(r) fractions m/r whose numerator m satisfies the con- 
ditions (m, r) =l and l<m <r. And let Q,(X), O<x<l, de- 
note the distribution function of the B(r) fractions contained 

in S”‘. Then (18 bis) shows that the ratio occurring on the left 
of (21 bis) is the n- th Fourier-Stieltjes coefficient of Q~(x), i. e., 

that 

s c (4 
exp 2rcinxdgr(x) = -c-- 

0 
@ (4 

Thus it is clear from the criterion of WEYL for equidistribution 
(mod. l), that the content of (21 bis) may be expressed as follows: 
The ordered infinite sequence of fractions which is obtained by 

writing r=l,2,... in (22) is uniformly distributed on the inter- 
val [0, 11. This fact, which is equivalent to a result of P~LYA 
may be obtained without the Fourier analysis (22 bis) of the, 



Ramanuj’an sums. 51 

sequence (22) also, and contains the corresponding fact concer- 
ning the ordered infinite sequence of Farey sections 7). 

7. The considerations of (§ 4 and) 5 5 may be modified in 
such a way as to lead from (Z3) to (P). To this end, one merely 

has to replace the condition (8) by the pair of conditions 

(23) 
~If(P)-ll <oo, &.lf'P'2-11 <oo* 

P P 

Then one obtains the following theorem: 

A strongly multiplicative, positive f(n) which satisfies (23) 
is almost periodic (B2) and has the Fourier expansion (16) or 
(19), (20) ; furthermore, 

(24) ~{(f-fk)21- 0, as k--+ 00, 

atid the Parseval relation takes the form 

(25) M{f2} =Z@(r)aF2. 
r=l 

In fact, if (23) is satisfied, then (4) shows that (9) is appli- 

cable to any of the three functions f (n)2; f,(n)"; f(n) fk(n). 
Thus, the three averages M{f2}; M{f,"}; ik?{f f,} exist and have 
the respective values 

Hence, Al{f(n)2}+M{fk(n)2}-2M{f(n)fk(n)}-0, as k---a. 
This proves (24). Since fk (n) is, by 5 1, a periodic function of n, 
it follows from (24) that f(n) is almost periodic (B*). Finally, 

(25) is clear from (17), since (19) and (18) show that every 
amplitude (20) occurs in (17) exactly Q(r) times. 

‘) Cf. G. P6lya and G. S z egG, Aufgaben und LehrsZtze, Berlin, Sprin- 
ger 1925, chap. VIII, nos. 263-264 and chap. II, nos. 188-189. 

4’ 
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As an illustration, consider the example (2). Then f(p)=l--p-l; 
so that (23) is satisfied, and (20) shows that the coefficients (19) are 

(26) q= WflP (r) L7(p2-V’ I (f(n) = @(n)/n). 
fir 

8. The following theorem may be considered as the ana- 

logue to BOHR’S theorem concerning uniformly almost periodic 
functions with linearly independent exponents : 

A sfrongZy mu&Zicative positive function f(n) is un;formiy 

almost periodic if and only if 

(27) ml-f(P)1 <a- 

The sufficiency of condition (27) is obvious, since (27) implies 

that the periodic functions (4) tend to f(n) uniformly for all n, 
as k--+co. In order to prove the necessity of (27), notice first 
that one can assume f(p) 41, In fact, 

nf(d <a (and thereforerCgif (p) - 1) <a ), 
(P) >I 

since if nf (p) = co, then f(n) cannot be bounded. Suppose then 
f(P)>1 

that f(p) 41 and let L be a number such that every sequence 

of L consecutive integers contains a translation number belonging 
to l/2. Suppose further that (27) does not hold. Then nf (p) = 0. 
Hence, there exist indices k,= 1< k< . . . < k, satisfying 

f bkj)f(g+,). . .f b,,,) < f for i = %I, . . . , L - 1. 

But there obviously exists an integer N such that 

Nfj = 0 (mod pkj pkj+l l n. 
pkj+J forj=O,l,..., L-l. 

Hence, f(N+ j) < f for j = 0, 1, . . . , L - 1. This contradicts 

f(l) = 1, since there must exist at least one j,, (0 < jO< L - 1) 

such that 1 f (N+j,) --f(l) 1 < f . 

It may be mentioned that the proof could be modified in 
such a way as to dispose of the restriction f(n) > 0. 
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9. It is clear that all of the above considerations remain 

valid if one omits the condition of sfrong multiplicativity and 
replaces, for the resulting class of unrestricted multiplicative 
functions, the conditions formulated above by corresponding con- 

ditions. This holds, in particular, for the functions 

f(n) = 9, k (4 = .$m 9 
n 

whose formal trigonometrical expansions (which now turn out to 

be Fourier expansions) were explicitly determined by RAMANIJJAN, 

(Receiwed l&h 5. 7939). 

Paanaaymtosi cymn ~a mafme nepiofiwmi @ymqfi 
II. BP&em, ?&. Eaq, E. P. B&H BameH i A. Biwmep (&%nTiaiop). 

BigoMe TpHl?OHOMeTpEFfHe PaMaHyJ.lHOBe pO3I'OpHWiHa IIO- 

,?JaHe 6e3 AOBeAeHHff o~epqwwx IIIE p03~0p~eE~g Dyp’e Ma&e 
uepioP;u%nzrx ipynxni% 16eaixoswa. TeopeTa¶Ero-?nXcexsEa #q%xuia 

HeXaii 6yge CHJI~EO-M~JI~THIIJ~~~~BTHBH~, ~06~0 HeXaf Mae BJIa- 

cTzwkTb (I). BH~BJI~GTWE, qo BOHSL To,@ Maike nepi0pam.a 

i rpaxxsf9Eo-nepio~3xsEa. BoHa Mae p03l?OpHeHH8 B p"& @yp'Ci. 

4e po3ropu0un3 i~eurn¶ue po3ropueHnEo (19), ae c,(n) PaMa- 
EyaHosi CYMH (18 bis), a a, BHsHanerri -sepes (20). @y~Ixn;ii: c,(n) 

MO~KH;L lrpe&cTaBxrx 38 ~OIIOMO~OH> E&repoBoP +yHxI$ rf, i Me- 
6iyco3oP p, EIE ne arcaeMo B +opMsJIi (21). Tarcu~ cnoco6o~ 
p;OEOHaHO i~eHTsf+i~ax& 060x p03i?OpHeHb. 

06miT KP 643. 


