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Weyl proved that the sequence I is uniformly dense in [0, 2#] if and only if
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1 H. Weyl: Uber die Gleichverteilung von Zahlen mod Eins, Math. Ann., 1916, Bd. 77,

pp. 313-352.
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for all n. The sequence is called uniformly dense on the unit circle, if for any
arc of the length I
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holds. It is satisfied if and only if the sequence of numbers
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is, in the sense of (2), uniformly dense in [0, 27].
Let a closed Jordan-curve / of the complex {-plane be given. The sequence of
points
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lying on 1 is called uniformly dense if, mapping the exterior of I schlicht-con-
formally and the periphery continuously on the closed exterior of the unit
circle of the z-plane, we obtain on the circumference of the unit. circle a sequence
of points
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(5) 2, 2, o g™

uniformly dense in the sense of (4).”
We have to explain the case, when [ degenerates into an open arc on the
¢-plane. In this case, in the same say as in (5), we obtain two z;" belonging to

one ™. Let I be e.g. the interval [—1, +1]; in this case the mapping function

being { = %(z + %), the connection between the ¢{™ and z{™, i.e. between

™ and o™, respectively, is

j(n) —fnlnd
M = 1™ + ") = cos pi™

y=12,:.m n=12..., 0 =< o™ < 2r.

* The uniform-dense distribution of points lying on p, but with potential theoretic
characterization, occurs at first in the investigations of Hilbert; see D. Hilbert: Uber die
Entwickelung einer beliebigen analytischen Function einer Variabeln --- , Nachrichten von
der Koniglichen Gesellschaft Gottingen, 1897, pp. 63-70. The above formalization, which
is equivalent to Hilbert’s, is due to L. Fejér, see L. Fejér: I'nierpolation und konforme
Abbildung, Nachrichten van der Kon. Ges. Gottingen, 1918, pp. 319-331.
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For fixed » and 7, ¢i™ has two values, which lie symmetrically with respect to
¢ = m; s0 we call the sequence of poinis
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lying on (—1, 41], with
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ungformly dense, if for the sequence of numbers
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holds, where e, B8] means an arbitrary subinterval of [0, =].

To this definition, appearing artificial at the first moment, we may give geo-
metric sense in the following way: Let us draw upon [—1, +1] a semicircle and
project the point z.™ upon the circle and obtain A;™. Then ¢," means clearly
the angle between the positive real axis and 0A.”. So the above definition
means that a sequence of points in [—1, +1] is here called uniformly dense if,
projected upon the unit circle, the projections are uniformly distributed. Accord-
ing to this definition the most uniform distribution is the case ¢\ = vx/(n + 1),
b =1,2, ---n, n =1, 2 ...), attained when the sequence of points in
[—1, +1]is ¢ = cosvr/in+1) (» =1,2, ..., m,n=1,2,...). Letus
observe that for this sequence

wal§) = g G =) = U,

where U,(¢) are the Tchebysheff-polynomials of second kind; U, (cos 8) differs
only in a factor from sin (n + 1)8/sin 8, which is independent of ¢; these poly-
nomials are well known by their many important extremal properties. This

P Clearly 0 = ¢im <l < o < pf S,
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holds also in the important case o!” = 2"2; . 7. In both cases exactly

[ﬁ—_a_ n:l o (n fixed), fall in any subinterval [a, 8] of [0, x]; the bracket
™

[
n.

in the last expression means the largest integer contained in B
™

According to Weyl!'s criterion the uniformly dense distribution of a sequence of
points is assured by the asymptotic behaviour of certain sequences associated
with it. Fekete® gives another criterion of the uniform dense distribution; he
forms with the sequence of points 9M; the sequence of polynomials

i II @ — 2 (=12, --)

-1 0 x," +1

Fic. 1

and shows that I is uniformly distributed upon ! when and only when at every
fixed point 2y of I

lim (| walzo) D" = M,

n—so
where M is the so-called transfinite diameter® of I. If Iis the interval [—1 +1]
then M = };if lis a circle, the radius of which is 1, then M = 1. Thus Fekete’s
criterion requires instead of asymptotic equalities only inequalities.

Let us now consider the special case when [ is the interval [—1, 4+1]. In this

13 T (n)

[4d
n | numbers ¢,

case we stated that the ideal case is obtained when I:

=
(n fixed), fall in any subinterval [, 8] of [0, ]. The above mentioned theorems
give no account of the measure of the deviation from this ideal case. In this
direction we prove the following

4 We know this theorem only from an oral communication.
& This notion was introduced by M. Fekete: Uber die Vertetlung der Wurzeln bei gewissen
algebraischen Gleichungen, elc., Math. Zeit., 1923, pp. 228-249.
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THEOREM: Let the sequence of points
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be given. Let us construct the matrix
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¢1
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with
£ = cos o™, 0= o™ =, p=1,2,--- 1, n=12 .-
If for the polynomials w.(¥) = [[1=1 (¢ = ££™) the inequality
A
@ o) | =452, —lSPS LR =12,
holds, then for every subinterval [«, 8] of [0, 7] we have
®) > o1-f7% < 2 (niog A
> T log 3
agelnlcs

Our proof differs thoroughly from that of Fekete and besides it is elementary.
A(n) in (7) denotes any function of # tending monotonically to infinity and for
which, following Tchebysheff, A(n) = 2.

The proof requires a theorem of M. Riesz,’ the proof of which is so short that
for sake of completeness we may reproduce it as a

Lemma. Let the trigonometric polynomial f(¢) of order n take ils absolute
mazimum 0 [0, 27] al ¢ = o ; then the distance of the next root from this ¢n 7s at
least w/2n to the right or lo the left. Thus a fortiori: if f(p) takes its absolute maxi-
maum between two real roots, then the distance between these roots is = w/n.

Proor. Suppose that the theorem is-false. Without any loss of generality
we may assume ¢ = 0, there is a maximum at ¢ = ¢, and the value of this
maximum is 1. Suppose, that the next root lies to the right. Then for ¢ = 0

& M. Riesz: Eine trigonometrische Interpolations-formel efc., Jahresbericht der deutschen
Mathematikerver, 1915, Bd. 23, pp. 354-368.
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the curves ¥ = f(¢) and ¥ = cos ne would have at least one point of intersection
and according to the supposition at least three in [0, 7/n]. There is evidently
at least one point of intersection at each of the intervals [w/n, 27/n], [2r/n, 3x/n],
co- [(2n — 2)7/n, (2n — 1)m/n] too; thus the trigonometric polynomial f(g) —
cos N, of order n, would have in [0, 2x] (2n + 1) roots, an obvious impossibility.

Now we proceed to prove our theorem. It will be sufficient to prove the
upper estimate, for if we have proved

b i A 183_3 (n log A (n))!

¥
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for every subinterval [«, 8] between 0 and w, then
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(9a) ; 1 —n < fog 3 (nlog A(n))
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i.e. from (9a) and (9b)
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whieh implies the lower estimate.
Let us now consider the upper estimate. Let [a, 8] be any subinterval of

[0, #], but now we regard it as fixed. Let k = [‘8 il

n], let I be any positive

m
integer, and consider the following extremum problem of the Tchebysheff type:
determine the minimum of the absolute maxima of the polynomials f(¢) =
"+ at™" + --- + a, taken in [—1, 41] with the restriction, that f(¢) has in
the interval [cos B8, cos ] = [a, b], & + 2l roots, (counted by their multiplicity),
where as a matter of fact & 4+ 2l £ n. By a well known argument the existence
of this polynomial is assured. We shall prove that the extremum polynomial
() takes its absolute maximum value with respeet to [—1, 4-1] in each of its
root-intervals [£{%), "] which is in the interior of [a, b. For let the absolute
value of the maximum of f;(f) in [—1, 4+1] be M and, in [¢{33, &7, | 1) | =
M — g, with 4 > 0. Then according to a fundamental theorem, for the poly-
nomial
L)

e o v SHOMME — w=m) i k)
ﬁ(f) =] (; _ fin))(f _ ;_S:;) (§' §': 5)(5‘ §v+1 E)
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(where e > 0), we have in [¢$}] — €, &8 4+ €] /i) | £ M — n, if e suffici-
ently small. On the other hand in thu:- exterior of [t — &, ¢ + €], since

@) = [ (1 ¢ — i_fn)) (1 e f_;f}_fi{)

{n) (n} 2
_ (){1 Bl <V N I }
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we have, for e < ;'VTM’
_ € g-iﬂ) - ;Eii | (n} (n)
|f+(§-) l < Ifl(g-) | ‘1 § _ g_in) ”; f::i < -‘M 1 _(; g.v+1

This is less than M for suﬂiciently small ¢, which contradicts the fact that
fi{}) is an extremum polynomial. Thus fi(cos #) is a polynomial of order n the
k + 2I roots of which in [«, 8] determine intervals such that in each of these
intervals f(cos #) takes its absolute maximum.

Now we apply the theorem of M. Riesz formulated in the Lemma. According

to this f(cos #) cannot have in the interior of [«, 8] more than [ﬁ - an] =k
m

roots i.e. 21 roots must be located at the borders and consequently their mul-
tiplicity must be ! at least at one of the borders.

By the premise, by the definition of f,({), and by the above, we obtain that
if wa () has & + 2l roots in [a, b], then

A0 5 ax o] 2 Jmax A0 2 max (g,

(10 2r T amsh

where Y1(£) = " + b¢™™ + ... + b, denotes the polynomial of degree n the
absolute maximum of which is a minimum for polynomials of degree » having
somewhere in [—1, +1] one root with multiph’cit}r I As
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we have, evidently, (by (10)),

1 2
e (L[ 0
where ¥»({) = {" + - .. runs over the polynomials of order n having somewhere
in [—1, +1] a root of the multiplicity I. Let I.({o) denote the minimum value of
l (II%(;?'J)* di, if Ya(¢) = ¢" + - - - runs over the polynomials of degree » having
at a fized {oin [—1, +1] a root of multiplicity I. Then we have

(11) Aw) ( In(fn))

2n
—‘15{'5‘!-1
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Let us now consider I,.(t). Every ¥s(¢) can be written in the form (¢ — )
¥a(t), where ¢4(¢) = ¢" 4 --.. Thus

- @) Fls — s
L(%) = it ks (0 = DO

Let { = %(z + %), which transforms [—1, 4+1] into the upper part of the unit
circle of the z-plane. Then—for z = ¢*—

12
|21
In(fo) = min 1 f \h(z + ) z + % — 2§ d'p

s
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as | z | = 1, we have evidently for {o = cos ap

dg.

1 2r
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where the last minimum is to be taken amongst the polynomials ys(z) = 2 4+
. of degree 2n having at z = ¢"* and z = ¢ "™ roots of multiplicity . Thus

Imn>?wmm£mgh®Fw,

where the minimum relates to the polynomials of degree 2n y4(z) = 2" + - ..
having an l-fold root only at z = ¢, But in this case, since ¢7(2) =
(z — ") gs(2), we have
1 iy |2
1@ > gmmin [ 0@ Pz = o de,
where ¥s(2) runs over the polynomials of degree (2n — I) beginning with z** ',
Finally by replacing ¢ by oy + ¢ + = we obtain

1 .
(12) In(i‘ﬂ) o 2‘2.T+]-. min jl‘z!-l l‘;’g(z) l2! 1 + z 1“ d@,
the minimum being taken for all polynomials ¥s(z) = 2" 4 ... of degree

2n — ).
If p(p) defines in [0, 2] a non negative and L-integrable function then, after

Szegd we may define a sequence of polynomials ¢o(2), ¢1(z), - -- such that
(13a) ¢n(z) =2 4+ ... m=12 --.
=\ =0;1)""1 _1;
(13b) f ¢n(2)(2)" ple) de = 0 - 1.2 S
|zl=1 = 1,4 -+
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In this case ¢.(z) minimizes, for polynomials U(z) of degree m of the form
U(z) = 2™ + - - -, the integral f » | U2) 'ple) dp. For any other such poly-
|zl=

nomial may be reduced the form ¢.(z) + wn_1(2), where ,,_1(2) is a polynomial
of degree (m — 1). Then by (13b)

thl | ¢m(2) + 7ma(2) 'p(e) do
= f} L ple) do + 2R f] oy P EIrms(@)ple) do + f; |=1”""“("’) plp) de

[ 100 ot [ 1mas@) Pp)doz [ [6a) Pole de,
and equality holds only for 7....(2) = 0. The expression on the right side of (12)
takes its minimum value for the (2n — I)** polynomial orthogonal to the weight-
function p(e) = |1 4+ 2 [**. According to a theorem of Szegé these polynomials
may be expressed in terms of Jacobi polynomials but we prefer to present them
in the form of an explicit integral interesting in itself. For m = 2n — [ we write

I(Qn-l-l

z(% + I)
(19) gauale) = [e-oa+pia= 3 Lol Fuat).

a+2* E?
This expression is a polynomial; we prove it by showing that Fe,u(—1) =
Fiu(—=1) = ... = FOP(—1) = 0. The first of these equations is an imme-

diate consequence of (14). Sincefor 1 £ » £ 1 — 1 we have by (14)
Fu@) = G- 1DA—2) .. G — ) L @ — 07 + 0 e e,

it is evident that the assertion holdsfor 1 £ » £ 1 — 1. On the other hand
Fida(z) = 1 — D1 + 2)'2"7,

ie. evidently Fitu(—1) = ... = Fi¥P(=1) = 0. Hence the expression
in (14) is a polynomial.

We now prove that the coefficient of 22" ' in (14) equals 1. The coefficient in
question is

o (z — 071 + ' dt
( ) P z?.ﬂ‘F!
_ t)i—l 2n

z?ﬂ‘H

_ (2n + z) lim I (e
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which by the substitution ¢{ = zw can be transformed into

2n + 1\ .. * [T e € ¥ B P S
I( ] ),ILEL,:;U w) T w dw—l( I )fo (1 —=w) w'dw = 1.

And now we have to verify the relation of orthogonality. Let
f : 1qm,‘_;(z)(é)'ll +z["de = 4,. r=0,1,... Cn —1—1).
1z|=
Since, for |z | =

142" = (1+z)"

Eo ]
0| =
-

we have by (14)
(2?1. + l)
r oy 2n + ! F. 3n+3(z) F Sn—l—l(z)
4, = I( 1 ) L.-l 2+ f.e.-, P

Hence if in Fana(2) the coeficient of 2°, 2'*, . .. | zs"" equals 0, (13b) is verified.
But according to the definition of Fan(2)

(15)  Fonpa(z) = ]:: (=07 + ' dt + fn | z— 071 + 't

Here the first integral is a polynomial of z of degree (I — 1); thus it has no
influence upon our assertion. The second one we transform by the substitution
t = zw into

1
z”"f (1 —w) 1 + 2w)'w™ ™ dw.
o
Thus the second term is a polynomial the lowest term of which is 2n, which

establishes the orthogonality.
The minimum value is given by

_’;lel%n—t(z)izll + 2" dp = L[ G2a@) (D" + |1+ 2P de

(Zn + E)
= bant(2) B 71 + 2P dp = f Frn@)
Jzi=1

—— Zin+l

= 2xl (%?_ l) X (the coefficient of 2™ in Fa.pi(2)),

which by the form of Fy,.y(2) in (15) equals
2n + z)

2n + 1\ [* -1, enl 5 _ ( l
l
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(2n + z)
T l

Il‘l(;ﬂ) > 2_2; -'_(“En—)""!

By this and (12)

!
Le., by (11),

oy 1 (2?11-}-5)}:“1_ . g ;
(16) s 2 AR (H (1 + )) :

2" 2 (%) 2t \;7% 2n —
l

l
Since om—, = <2andlog (14 2z) = 2 z, (if 0 = = = 2), we have, (by (16)),
27
o> m[o 8 1]
r=2n—I-+1 ¥V

2 42
> mxo [ s (14 5ty ) | > o[ (%9) 1]

4 )
1< e (n log A(n))?,

which establishes the result.

Note I. For the Tchebysheff-polynomial 7',.(z), where T,(cos ) = —— =
cos"d + ..., wehavein [—1, +1] evidently | T(z) | = 2ﬂ_1, i.e. Tn(x) approxi-

; ; P 2
mates the function y = 0 in Tchebyshefi’s sense, the error being less then o

By the above argument it can be seen that the function 4 = 0 is to be approxi-
mated not essentially worse, in Bessel’s sense, by a polynomial of the form
z" 4+ ..., even when the polynomial has somewhere in [—1, +1] a root the
multiplicity of which is less than [v/n]. We are of the opinion that this very
probably holds also for the Tchebysheff approximation; i.e. there exists a poly-

nomial of degree n f(x) = =" + ..., which has somewhere in [—1, +1] a root
of the multiplicity [+/n], and yet in [—1, +1]
| 2°f(=) | < B,

where B is independent of n. By this it is clear that in general, the above
theorem is not to be improved.

Note II.  Let wa(z) = 2" 4+ ... be the polynomial of degree n minimizing for
polynomials of degree n of the form f(z) = z" + ... the integral

an L = [ 1@ Fp@ d,
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where k is a fixed positive number, p(z) is L-integrable, and in [—1, +1]p(z) =
m(> 0). According to a theorem of Fejér all roots of w.(x) are in [—1, +1].
Denote the absolute maximum of |w,(z) | by M; if this maximum is taken at

z = x9 and one of the intervals I::f:n = %2, To |, | To, Zo + 2-%2], suppose the
latter, lies in [—1, +1], then

zgHn~2

_E | wn(x) [*p(z) dz > mjz | waz) |¥ dx.

But by Markoff’s theorem | w.(z) | > 12{— in [xo , o + 2—1—?12], ie.

1 k
(18) _L |wn(z) |*p(2) dz > m(%) 2—:;2.

On the other hand, if /(z) = Tn(coz #) = c%;_ﬂ , we obtain by the minimum-prop-

erty of wn(x)
1 1
(19) [ 0@ Fp@ de < g [ pla)d,

i.e. by (18) and (19), for [—1, +1] we have

22-{-}:_1 1 k1 nﬁk_l
@ s <2 ([ p0a) "o

Thus by the theorem mentioned above we obtain for the roots of polynomials
minimizing the expressions in (17) that if the roots on the »** polynomials are
2™, 25" ..., 2, and £ = cos 6/, 0 < ¢ < m, then for any fixed sub-

interval (e, 8]

Z 1 == ani < ¢(p, k) (n log )t
«évf"’éﬁ N I
ie., roughly speaking, the distribution of the roots of the minimizing poly-
nomials is uniformly dense. Analogous theorems are to be deduced for the
polynomials solving extremum problems of the Tchebysheff-type.
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