
ADDITIVE FUNCTIONS AND ALMOST PERIODICITY (BY).* 

By PAUL ERU~S and AUREL WINTKER. 

1, By an additive function]C=f(.?z) is meant a sequencef(l),f(2); * ., 
defined for every posit.ire int.eger ~1 in such a way tha.t 

(1) f(n., n2) =f(n,) + f(n,) whenever (w,, ?7?) = 1; (f(1) = 0). 

Thus. 

vhere ti; = fii(71) denoks, for fixed k, the additive function 

(31 j’ii(n) = i f(i)(n), 
+I 

and f’“J = ff”! (11) is tl re additive function which is defined in terms of the 
?;-th prime number, I*, as follows: 

{p, = ?, 1’: = 3. ,!I:. = 5. . .). Conversely, if ({f ( pkL j }} is any given double 
sequence of numbers, then (4j: (3). (2) define f(li), fk, f, respectively, as 

adrlitire functions of v. In fact, all but a finite number of the terms of the 

infinite series (2) is zero for everv fixed TV. 

The function f()?) is called multiplicatiw if in condition (1) the sum 
f(/i:‘i +f(t?z) 1 )ecomes replaced by the product f( tll)f(n2). i Conditions which 

are either necessary or sufficient for the almost periodicity (B’) of a multi- 
plicative function f (12) are implied by the results of a recent l~aper.~ HoTTever, 

none of the results founcl Zoc. c2.l supl)liea a criterion which is necessary and 

at the wile time wfficient for the alino5t periodicitp (B’) of a multiplicative 

function (ilnt c\en if f(71) i- s supposed to he real-valued). This situation i\ 
not rurprising. since if a real-valued multiplicative function ,/ ( II ) changes 

its sign kth the uniformity of statistical randomness (as does the Mtihius 
function f = I*‘), then the question as to a generalized almost periodic hehal-ior 



of f(~) can involT-e problems of the same order of delicacy as do tllr wlev:lllt 
generalisat.ions of the prime-number theorem, if not of the Iiiemann hppot,hesis. 

[While the prime-number theorem is equivald to the stabement that the 
t?-average of ~(72) exp (zA?z) exists for h = 0, Davenport’s results (Qwdedy 

Jownnl of Nuth.enzu~tics, vol. 8 (193’i‘), pp. 313-320), which were obtained 

by an applicat.ion of the deep methods of Vinogradoff, imply that this acerage 
exists and vanishes for every real A. In ot,her words, all Fourier coefikients 

of p(n) exist and vanish. Kence, p@) cannot be almost periodic (B). For 

if it were, the ?i-arerage of 

ought to vanish. But this average is known to be 6~~’ # 0.1 

The object of the present paper is to show that the problem admits of a 

definitive solution in the case of additive, instead of niult~iplicativc, functions. 

In fact, the question of almost periodicity (B’) may then completely be 

answered by the following theorem : 

(i) ,f(p3. 
P P’ 

This fact. seems to be an arithmetical counterpart, of a similar result con- 

cerning the case of linearly independent frequencies (cf. 70~. cit.“. 1’1). 79-W). 

But we were unable to find the common source of these two parallel thenrems. 
It is understood that $ denotes summation over all prime numbers, which 

P 
are thought of as ordered according to magnitude (the series (i) need not 

be absolutely convergent). 

2. If f’ denotes the real, and f” the imaginary, part of f, the function 

f(n) =f’(n) + if”( ) ‘L ld’t’ ?z 1q ac 1 lye if and only if so are both function5 r ( )I), 

f(?z). Similarl!; f(n) ‘b 1 17 a most periodic (B?) if and only if so are TO/) 

and f”(a). Finally, it is dear from 1 f I2 = (/‘) ? + ($‘)2 that both series 

(i)) (ii) are con\-ergent if and only if so are the % + 2 series which one 

obtains by writing f’ and f”’ for f in (i} , (ii). 

Consequently, it is sufficient to prove the italicized theorem for thr case 
of real-valued adtlitire functions. The possibility of this reduction i.2 wential 

for tile mrtliorl to be ;Ipplid. In fart, use will be matle of a criterion whi~ll 
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xcent.l\r ? was proved to be necessar\T and sufficient for those real-valued addi- 

ti,-e functions which possess an asymptotic distribution function. Kow, a 
generalization of this criterion for complex-valued functions is not known and 

seems to lead to essential difficulties. 

The criterion in question states ‘? that a real-valued additive function f( II) 
has an ay~mptotic distribution if and only if both series 

(I) ;y; (II) +y 

are conwrpent. where y- = f’(l)) is Mined. for y = f ( )I): by placing 

(5) y+ = y or y+ = 1 according as I y 1 < 1 or ( y 1 2 1. 

It, follows that the convergence of both series (I); (II) is necessary for 

every (real-valued, additive) f which is almost periodic (B”). In fact, it is 
known 3 that almost periodicity in relative measure and so, in particular, 

almost periodicity in relat.ive mean of any positive order (= 2 in t,he present 
case) is always sufficient for the exist.ence of an asymptotic distribution 

function. 

2 bis. Suppose, in particular, that f(p) = O(1) as p + w. Then, since 

the series (ii) of 8 1 is convergent if and only if so is the series 

&!Y; 
P P 

hence, one readily sees from (5) that the convergence of the series (i), (ii) 

which occur in the criterion of 5 1 is equivalent to the convergence of the 
respective series (I), (II) which occur in the criterion of 5 2. 

3. For arbitrary additive functions f; the italicized statement of $ 1 will 

be refined by exhibiting, in case of almost periodicity (B’), a sequence of 

functions which are explicitly defined in terms of I’: tend to f! with reference 

? Paul Erdii-: and Awe1 Wintrier. ” Additive arithmetical functions and statistical 
independence,” American Jovrnal of .linthematics, Vol. 61 ( 1939) f pp. 713-721. 

3 Bikge <Jewen and Sure1 Wintner, ” Distribution functions and the Riemann zeta 

function,” Tru~rsactions of ‘the dnzerican lllathewmtical Society, vol. 38 (1935): pp. 48-88, 
more particu!arly Theorem 24 (and Theorem 26 ) s 
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to the metric of the space (B?), and are almost periodic (EP). In fact: it 

turns out Ohat f cn~mot be aIm,ost periodic (B?) unless it is almost periodic 
(B') itb &he of its expnsi.on (2,). In other lords, if f is almost periodic 

(B’), then, on the one hand, each of the functions f(l): f(?): . . is almost 

periodic (P), and, on, bhe other hand, 

3 his. Due to this fact, it will be possible to calculate t,he Fourier series 

of f in terms of the Ramanujan sums 

f&ere 1 = 1, 2, 3, * . . : k = 1, 2? 3; rind 

(11) 

Since (9) consists of 4(m) terms (4 = Euler’s function), and since #(pE) 

=pz-pl-l, the P arsenal relation belonging to (10) is 

(12) U{I f I’} = I uo p ffz (ph~-pP)I azli 12. 

4. It is easy to &on? that if f is such as to make the series (ii) of 8 1 
convergent, then each of the functions fk is almost periodic (B’). 

To this end, use will be made of t.he following fact, proved Zoc. c2.l 

(Theorem II) : If a function g = g (17) of the positive integer IZ is such that, 

for some fixed prime number p+ one has 

(13) g(n) = g(p’) whenever p’] 71 and pl+lf~, 

then g is almost periodic (Hz) if and 0111s if 

It is clear from (4) that condition (13) is sati&d by g = f(“) and 
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p = pk, where k is arbitrarily tied. Furthermore, if f is such a,s to make 
the series (ii) convergent; then, for every fixed k, 

so that, since f(p~.l) = f’“’ (ez) in view of (4), condition (14) also is 
satisfied by g = f(“) and p = pk. Consequently, f’“) is almost periodic (B2). 
Since k is arbitrary, and since the almost periodic (B’) functions form a linear 

space, the almost periodicity (P) of 5 now follow,s from (3). 

4 his. It was shown Zoc. cif.l (Tl ieorem III) that if a function y (1~) 

satisfies (13) for some fixed prime p and is almost periodic (B), then its 

Fourier expansion is 

a? Y (Pi> -SW) g(n) +X(g) + f nzcp~(n), where nl = 2 
4=1 Pi * 

It follows therefore from $4 that if f is such as t,o make the series (ii) 
convergent, then, for every k, 

Hence, (IO) r&~ (11) will follow from (4) as soon as it is proved that, on 
the one hand, the convergence of the series (ii) is a necessary condition for 

the almost periodicity (B”) of f, and that, on the other hand, f mu:t satisfy 
(8) whenever it is almost periodic (B’). 

Proof of the sufficiency of the conditions, 

From here on till the end of 5 9, the assumption will be that f ( II j is a 

real additive function for whidh both series (i), (ii) of 5 1 ase conrergent. 
The final result (5 9) will be that f(n) must then be almost periodic (B’). 

5. In terms of the given f(n), define an P(n) as follotws: F(?L) is that 

addit,ive function for which the double sequence { {F(pkl)}} is give.11 b! 

(16) 
f(PZl> if I f(P) I 2 1. 

F(pz) = j f(pz) --f(p), if I f(k)1 < 1, 
where p = pk and k = 1,2,3,. . . . 

It is easy to see that the convergence of the series (ii) implies that 

In fact, it is clear from (16) that the series (17) is majorized by A + B + C, 

where 



and SO it is suficient to prove the convergence of these three series. But 
application of (16) to 2 = 1 shows that F(p) = 0 unless ~ F(p) / 2 1, in 
which case F(‘(p) = f(p) : so that the series A reduces to 

A= z I f(P)1 : 
If(Pl’21 P 

and is therefore convergent in virtue of the assumption that the series (ii) 
tomerges. It is clear from t,he same assumption and from (6): that also the 
series B is convergent. Finally, the series C may be written in the form 

But the convergence of the first of these two double series is assured by (6), 

lrhile the second is, in view of 

ma jorized by 

Since the value of the latter series was seen to be 9 < SO 7 the proof of (17) 

is now complete. 

Similarly, 

Tn fact. since (n---b)* 5 2(o’ + b’) f or arbitrary real u, b, one sees from 
(16) that the series (18) is majorized by A’ $- 3’ + 17’ where 

.&nl the proof for the convergence of these three series requires but a repeti- 

tion (with obvious simplifications) of the above proof for the convergence of 

the three series 8. B, C. 
Notice that only the convergence of the second of the series (i), (ii} 

was used thus far. The same remark till hold for 5 6. 

6. It will no-7 be shown that if Fk(n,) denotes the additive function 



IDDITIVE FTNCTIONR MiD ALXOST PERIODIClTP (B’). 641 

u-hich belongs to the additive function F (.n) in t)he same way as (3) belongs 

to f(n): then 

(19) AT{1 F-Fli;, Iz}+O as k-+ W, 

To this end, notice first that: by the definition (16) of the additive 

I FCP”>FC?) I + +, ; I Fbz) 1’) 

fixed, and the summation indices p, 4 run 

through t.hose primes which exceed k. On writing this inequality in the form 

keeping k fixed but letting n.+ 30: one sees that 

(19 bis) B { 1 F -- Fk / ‘} 5 2k + E’k, 

n-here 

q=; 2 1 PIP9 I 
l=1p>P pi 

e;,=: 2 I P(PZ) I2 
1=1 p,>ih. P1 . 

But these sums Q 8~ are identical with the k-th remainders of the convergent 
series (I?), (18)) respectively, and tend therefore to zero as k + 00. Hence, 

(19) is implied by (19 bis). 

7. If Gk = GJ,.( n) denotes the additive function which belongs to the 
additive function 
(“0) G=f-F 

in the same lvay as f~. PI; belong to f, F respectively, then obviously 

(21) Gk=fi,-FR. 

Thus, it is clear from (16) that, for any fixed k, the elements of the double 

sequence {{G(pr) - Gk(pr)}} of the additive function G(n) -f&(n) of n 

are independent of Z, i. e., that 

(22) G(p)-&(p) = G(p2)-G~k(p~)= G(p3)-&Q(p") =. * . 

for every prime p. It ie also seen from (16) and (20) that 
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(23) 
for every prime p. 

j G(p)/&1 

Since the series (i) of ,a 1 is supposed to be convergent, it is clear from 
(20) and (1’7) that also 

Similarly, since the series (ii) of 8 1 is supposed to be convergent: it is clear 

from (20), from the Schwarz inequality 

r, I f(P$(P) I ( 2 f(P) 

P 

=(,+)“(f$Ly, 

and from (lS), that 

(25) 

8. Due to (22), it is now’ easy to transcribe the O-estimates a.pplied 
lot. ciL2 (p, Ylci) into’ o-e&mates, which are to the effect that 

(26) @(I G-G~1*}+0 as b+ W, 

In fact, (26) may be proved a’s follows: 
If rz and k are arbitrarily fixed, one readily verifies from (22) and fro111 

the definitions of the real addiOive fuuctions G, Gk, that 

where [z] denotes the integtal part of 5, the prime of 32” means that p’# 4, 
and t.he summat.ion indices p, 7 run throxlgh those primes which exceed X; 

(‘however, the sums on the right] are finite sums for every fixed R, since 

12 c 1 z 
= 0 and i = 

c1 
0 whenever llq > H and ~1 > 17, 

respectively) + Consequently, 

(26 bis) ; jzll G(m) -- @Am> 1’ 

8 bis. AS to the inner sum in the second of the four terms on the right 



ADDITIVE FUXCTIOXX .&ND -4LMOST PERIODICITY (B’). 643 

of (26 bis), one sees from (24) that if k is fixed and dJi) denotes the maximum 

of the function 

xc(q) 
Kqgzlp Q 

ofpand~nntherange~.~p~~;n=1,2,,...,t,henE(k)~Oaskjco; 

while the absolute value of the whole second term on the right of (26 bis) has, 
for every S, the majorant 

i G(P) 1 2 8---- 1 @) 5 t&(k) r, - , 
nkp~T3 P - &l&I P 

by (23). Finally, - 

Thus, on keeping k fixed but letting 1~ + ~0: one sees from (26 bis) that 

But p and q are prime numbers ; so that 

2 L < Const. aid 1 S 14 0 
nt&s,, 2, n pqsn 

as 7b + w . Hence, - 

$?{I G--Gl< I?} slimsup 2 G(P) * __ 
> 

+ const. dk’ + S .?LQL!! . 
n-*m I;<p& p P>?G P 

On letting here k+ x: and using the fact E(~’ +lO as k + x, one sees from 

(24) and (25) that the proof of (26) is complete. 

9. It is 110~ easy to conclude that f(n) is almost periodic (B*) and 

satisfies (8). 

In fact, since it was proved in $ $ that fti is almost periodic (P) in 
virtue of the convergence of the series (ii), it is sufficient to show that 

AT{lf--fk12}40 as Ic+ 00. 

But the truth of this relation is impljecl by (19) and (26), since it is clear 

from (20> and (21) that 



Proof of the necessity of the conditions. 

What remains to be proved is that the sufficient. condition represented by 

the convergence of the two series (i), (ii) of ‘$ 1 is necessary as well. Thus, 

from now on till the end of the paper, t,he assumption will be that the f(n) 
is any given real, additix?e function which is almost periodic (F). 

10. Since f(?~,) has all asymptotic distribution function, the two series 

(I), (II) of $2 are conrergent. And, in view of (5): the convergence of 

(II) implies that 

(27) 

In terms of the given f ( II), define au additive function D( 11) by placing 

(28) D=f-HH, 

where H = H (~7) denotes that additil-e function for whirl1 the double sequence 

{ {H(p”)}} is given by 

(29) J~(l-4 = 
{ 

f(P), if z # 1, 

f(P)> if 2 = 1 and 1 f(p) 1 2 1, 

0, if l= 1 and 1 f(p) 1 < 1, 

(p = p and k t 1, 2,3,. . .). Thus, 

; 

0, if Z I# 1, 

D(P7) = 0, if Z= 1 and [ f(p) ( 2 1: 

f(p), if I= 1 and 1 f(p)] < 1, 

and so it is clear from (27) that one obtains two con\-ergent series by writing 
D for f in (i)-(ii), 4 1. Since the first half of the italicized statement of 5 1 

was already prove4 (5 5-g 9)) it follows that D ( ?I) is almost periodic (6”‘). 

Since f(n) is almost periodic (P) by assumption, one sees from (28) that 
X7(?&) is almost periodic (B?). 

In particular, H(n) has a square-average 

(30) X{H2} < + 00. 

11. In what follows, T will deuote ang of those prime numbers for which 
the absolute value of the given additi~*e function f is not less than 1. Clearly, 

(27) may be written in the form 

Since also the density of the gwxdmtf~i integers is a positive number 

(= 6’~~), a standard application of the sieve of Erathostenes shows that (31) 
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may be interpreted as follows : If I!, j are lxxitive integers and p is a prime, 

let N = X(11, p, j) c1enot.e the number of t,hoae integers between 1 and ti which 

a,re of t,he form pjs, where s is q,wtdrrrffrei, is not. a multiple of p, and not a 
multiple of an>- of the pknea 1‘ (defined by / f(r) 1 2 1). Then there exists a 

constant ,f3 > 0 which is independent of II, p; j and is such that, 

N = N(q p, j) > ,&p-j. 

Hence; it is clear from the definibion (29) of the a.dditive function H( II) : 
that 

where t.he summa-Con indices p(= 2, 3, 5,. . .) and b( = 1, 2, I . .) run through 

those of their combinations for which pE < I?,. Thus, on writing this inequality 

in the form 

(collst. = p-1 < 00 ): 

and letting II 9 ‘c, one sees from (30) that 

(32) 

w,here p runs through all primes. 

12. In view of (29): the content of (32) is that, on the one hand, 

(33) 
T 3 l*(PZ)’ < w 
I=2 p pl 

3 

and, on the other han& 

(34) s- f(P)’ < *?. 
lflPl21 P 

while (36) implies that 

(35) z I f(P) I < w 
If(P) IB P * 

Finally, as pointed out at the beginning of $10 (cf. $2), the series 
(I), (11) of ‘5 2 ase conlrergent. This means, in view of (5), that 

(36) 
-J *f(P)’ < w 

IliP:e=1 P 
and that. also 

(37) 
2 f(p). 

if!pk% P 
18 conrergent. 

Now, the cenvergenee of the series (i) and (ii) of ‘5 1 is clear from 

(37), (35) a.nd (3ej, (34), (33), respectively. 


