ADDITIVE FUNCTIONS AND ALMOST PERIODICITY (B?).*

By Pavr Erpds and AUREL WINTNER.

1. By an additive function f = f(n) is meant a sequence f(1),f(2), - -
defined for every positive integer n in such a way that

(1) f(n. ns) =f(ny) + f(nz) whenever (n,,n:) =1; (f(1)=0).
Thus.

(2) F(n) =3 (n) = lim fi(n),
k=1 fe=r0C
where f. = fi(n) denotes, for fixed k, the additive function
2
(3) fr(n) = 2 f‘”(m

aned f* == {1 (n) iz the additive function which is defined in terms of the
ke-th prime number, ., as follows:

: o {0, if w20 (mod py),
ik —_—
() PR { (p;b . it ptln and piiee,
(=2 po=3, pa=2>5.- - ). Conversely, if {{f(m?)}]} is any given double

sequence of numbet& then (4), (3), (2) define f™!, fi, f, respectively, as
additive functions of n. In fact, all but a finite number of the terms of the
infinite series (2) is zevo for every fixed n.

The function f(n) is called multiplicative if in condition (1) the sum
f(n) + f(n:) becomes replaced by the produact f(n,}f(n.). Conditions which
are either necessary or sufficient for the almost periodicity (5%) of a multi-
plicative function f(n) are implied by the results of a vecent paper.! However,
none of the results found loe. cit.* supplies a criterion which is necessary and
at the same time sufficient for the almost periodicity (B?) of a multiplicative
function (1ot even if f(r) is supposed to be real-valued). This situation iz
not swrprising. since if a real-valued multiplicative function f(n) changes
its sign with the uniformity of statistical randomness (as does the Mibius
funcrion f= p). then the question as to a generalized almost periodic hehavior
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of f(n) can involve problems of the same order of delicacy as do the relevant
generalisations of the prime-nwmber theorem, if not of the Riemann hyvpothesis,
[While the prime-number theorem is equivalent to the statement that the
n-average of u(n) exp (ian) existe for A = 0, Davenport’s results (Quarterly
Journal of Mathematics, vol. 8 (193%). pp. 813-320), which were obtained
by an application of the deep methods of Vinogradoff, imply that this average
exists and vanishes for every real A. In other words, all Fourier coefficients
of u(n) exist and vanish. Hence, p(n) cannot be almost periodic (8}, For
if it were, the n-average of

| p(n) — (0404 ) = |pn)|=]p@)]?

ought to vanish. But this average is known to be 6z 24 0.]

The object of the present paper is to show that the problem admits of a
definitive solution in the case of additive, instead of multiplicative, functions.
In fact, the question of almost periodicity (B*) may then completely be
answered by the following theorem:

An additive funetion f=f(n) is almost periodic (B*) if and only if
both series

; (i1)

) S 5 LD
- A3 P

are convergent,

This fact seems to be an arithmetical counterpart of a similar result con-
cerning the caze of linearly independent frequencies (cf. loc. ¢it.®. pp. 79-80).
But we were unable to find the common source of these two parallel theorems.

It is understood that 3 denotes summation over all prime numbers, which

”
are thought of as ordered according to magnitude (the series (i) need not
be absolutely convergent).

2. If # denotes the real, and f” the imaginary, part of f, the function
f(n) = f'(n) 4 if”(n) is additive if and only if so are hoth functions f'(n),
f7(n). Similarly, f(n) is almost periodic (B*) if and only if so are f'(n)
and f”(n). Finally, it is clear from | f|*= (f')*+ (f”)? that both series
(i), (ii) are convergent if and only if so are the 2 4 2 series which one
obtains by writing 7" and f” for f in (i), (ii).

Consequently, it is sufficient to prove the italicized theorem for the case
of real-valued additive functions, The possibility of this reduction iz essential
for the method to he applied. In fact, use will be made of a criterion which
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recently * was proved to be necessary and sufficient for those real-valued addi-
tive functions which possess an asymptotic distribution function. Now, a
generalization of this criterion for complex-valued functions is not known and
seems to lead to essential difficulties.

The ¢riterion in question states ? that a real-valued additive function f(»)
has an asvmptotic distribution if and only if hoth series

(1) :f+(P); (1) Ef+(p)2
p P L
are convergent. where y~ == f*(n) iz defined. for y = f(n), by placing
(5) W=y or y*=1 according as |y | <lor |y|=1

It follows that the convergence of hoth series (I), (II) is necessary for
every (real-valued, additive) f which is almost periodic (B*). In fact, it is
known # that almost periodicity in velative measure and o, in particular,
almost periodicity in relative mean of any positive order (=2 in the present
case) is always sufficient for the existence of an asymptotic distribution
function.

2 bis. Suppose, in particular, that f(p) = 0(1) as p — . Then, since

6 szl
S
(6) 1’=2DPI< ’

the series (ii) of § 1 is convergent if and only if so is the series

N ) *
) @),
p P

hence. one readily sees from (5) that the convergence of the series (i), (ii)
which occur in the criterion of §1 is equivalent to the convergence of the

respective series (1), (II) which occur in the criterion of § 2.

3. For arbitrary additive functions f, the italicized statement of § 1 will
be refined by exhibiting, in case of almost periodicity (B*), a sequence of
functions which are explicitly defined in terms of f, tend to f with reference

2 Paul Erdos and Aurel Wintner, * Additive arithmetical functions and statistical
independence,” American Journal of Mathematics, vol. 61 (1939), pp. 713-T21.

* Borge Jessen and Aurel Wintner, “ Distribution functions and the Riemann zeta
function,” Traunsactions of the American Mathematical Society, vol. 38 (1933), pp. 48-88,
more particularly Theorem 24 (and Theorem 25).
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to the metric of the space (B?), and are almost periodic (B*). In faet, it
turns out that f cannot be almost periodic (B?) unless it is almost periodic
(B?) in virtue of its expansion (2). In other words, if f is almost periodic
(B?), then, on the one hand, each of the functions f¥, f®,- - - iz almost
periodic (B?), and. on, the other hand,

k
(8) M{|f—f]?} >0 as k- oo, (fro =3 f4),
j=1
where M{g) —lim = 3 g(D).
a—sna 1 i=1

3 bis. Due to this fact, it will be possible to calculate the Fourier sevies
of f in terms of the Ramanujan sums

(9)  em(n) =, exp (2ri - n), where 1=;=n and (j,m) = 1.
p (2mi - j

In fact, the explicit form of the Fourier expansion of an arbitrary additive,
almost periodic (B?) function f(n) turns out to be

(10) f(ﬂ') ~ @y + ?‘ 3 a'fkc‘i’kl(n)}
k
where | =1,2,8,- ., k=1,2,8," - - and
(11) ay =M (7}, am=§iﬁﬁi§ﬂﬁﬂ.
i=l

Since (9) consists of ¢(m) terms (¢ = Euler’s function), and since #(p?)
= pt — p™, the Parseval relation belonging to (10) is

(12) ML Y =0+ 330 —m ) | en I
&
4. Tt is easy to show that if f is such as to make the series (ii) of §1
convergent, then each of the functions fi is almost periodic (B*).
To this end, use will be made of the following fact, proved loc. cil.!

(Theorem IT): If a function g = g(n) of the positive integer » is such that,
for some fixed prime number p. one has

(13) g(n) = g(p') whenever p!|n and p*fn,

then g ig almost periodic (B5*) if and only if

a0 | Iy 2
(14) Eig(gf;) i,

It is clear from (4) that condition (13) is satisfied by g=7% and
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P = pr, where k iz arbitrarily fixed. Furthermore, if f is such as to make
the series (ii) convergent, then, for every fixed %,

(15) 020 L(B:Ll- < o0

=1 P
so that, since f(p!) = f* () in view of (4), condition (14) also is
satisfied by ¢ = f'® and p =— pr. Consequently, f* is almost periodic (B*).
Since k is arbitrary, and since the almost periodic (B?) functions form a linear
space, the almost periodicity (B?) of fr now follows from (3).

4 bis. It was shown loc. cit.) (Theorem III) that if a funetion g(n)
satisfies (13) for some fixed prime p and iz almost periedic (B), then its
Fourier expansion is

g(n)y ~M{g} + Etawpr(n), where a; = QEOI 9(#') ;g(p‘_l) i
i=

It follows thercfore from §4 that if f is such as to make the series (ii)

convergent, then, for every k,

o fik) By FUE (g -1
f® (n) ~ M{f®} 4 S aep, (n), where = S [*(p') pif (putt) .
1 i=l

Hence, (10) with (11) will follow from (4) as soon as it is proved that, on
the one hand, the convergence of the series (ii) is a necessary condition for
the almost periodicity (B%) of f, and that, on the other hand, f must zatisty
(8) whenever it ig almost periodic (B®).

Proof of the sufficiency of the conditions.

From here on till the end of § 9, the assumption will be that f(n) is a
real additive function for which both series (i), (ii) of §1 are convergent.
The final result (§9) will be that f(n) must then be almost periodic (B®).

5. In terms of the given f(n), define an F'(n) as follows: F(n) is that
additive function for which the double sequence {{F(p')}} is given by

F(p)), it [f(p)| = 1;
16 F(p! ___{ f(? ] : 3 .
_ P =130 — ), i T f(p)] < 1,
where p=p: and £=1,2,3,- * -,
It is easy to see that the convergence of the series (ii) implies that
o0 i
(17) 33 -|F—(?L| < 0.
=1 p Iy

In fact, it is clear from (16) that the series (17) is majorized by 4 + B +C,
where
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.Ma

)
{53

Lzz'F(p}[, =S 3@

P I=2 pt L p
end so it is sufficient to prove the convergence of these three series. But
application of (16) to 1==1 shows that F(p) =0 unless | F(p)| =1, in
which case F(p) = f(p): so that the series A reduces to

i— s L@l
lrmiz P
and is therefore convergent in virtue of the assumption that the series (ii)
converges. It is clear from the same assumption and from (6), that also the
geries B is convergent. Finally, the series €' may be written in the form

c=% s Ul 3 5 LW

- —

=2 ifip | <1 p‘ I=2 |fipi =1 Pt

But the convergence of the first of these two double series is assured by (6),
while the second is, in view of
1

I—;(

“e

: s (p=2':335,' i)

"
L

-1

majorized by
| f(p)]

)
If pr |2 P

-

Since the value of the latter series was seen to be 4 < o, the proof of (17)
is now complete.
Similarly,

20 Fipty|2
(18) 3 g LEQOL & o

=1 p P
Tn fact. since (a—b)2? = 2(a> + b*) for arbitrary real a, b, one sees from
(16) that the series (18) is majorized by A" 4 B’ 4 (¥ where

o=zl F@E o e3
p p
And the proof for the convergence of these three series requires but a repeti-
tion (with obvious simplifications) of the above proof for the convergence of
the three series 4. B, €.
Notice that only the convergence of the second of the series (i), (ii)
was used thus far. The same remark will hold for § 6.

FENE  p oS g LI

= i 7 14
P 7 1=2 P

=2

8. It will now be shown that if Fi(n) denotes the additive function
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which belongs to the additive function ¥ (#) in the same way as (3) belongs
to f(n), then
(19) H{|F—Fp|]?} =0 as k— o,

where M {| g |} =1lim sup%é | g(D) 2

To this end, notice first that, by the definition (16) of the additive
function F(n),

E‘!F(m} — Fi(m)|?

m=i o " - .
=L AF@F@) + 3 3 SIFEYI
_‘J:ljzll‘)qu)?tplqj | (p) (.{ )| _|_ g _P; | (1‘( )

where n and % are arbitrarily fixed, and the summation indices p, ¢ run
through those primes which exceed k. On writing this inequality in the form

o o0 | 1 2 20 Fiply|2
15 {F(m)—F’*(-m.)]Qg(E 3 —F-(f‘—”) + 3 3 @,
n =2 I=1p=ik P =1 p>b 7

keeping I fixed but letting n—> ¢, one sees that

(19 bis) E{l F—Fy [2} g € —+ e’k,
where
N | F(pt i o0 Fipl)|2
a3 g LEEOL % g [FOIR
F1p>k P =1p>u p

But these sums e, ¢’; are identical with the k-th remainders of the convergent
series (17), (18), respectively, and tend therefore to zero as k— . Hence,
(19) is implied by (19 bis).

7. If (= Gi(n) denotes the additive function which belongs to the
additive function
(20) G=f—F

in the same way as fi, Fr belong to f, F' respectively, then obviously
(1) Gy — fr — Fu.

Thus, it is clear from (16) that, for any fixed %, the elements of the double
sequence {{G(p') — Gz (p')}} of the additive function G(n) — Gx(n) of n
are independent of I, i. e., that

(R2)  G(p) — Gu(p) = G(p*) — Gu(p*) = G(p°) — Gr(p*) =" - -

for every prime p. It is also seen from (16) and (20) that
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(23) | G(p)|=1
for every prime p.
Since the series (i) of §1 is supposed to be convergent, it is clear from
(20) and (17) that also
G(p)
p

(24) b is convergent.
o

Similarly, since the series (ii) of § 1 is supposed to be convergent, it is clear
from (R0), from the Schwarz inequality

Lf(p)F(p)] F(p)2\ < Fp)*
f f4 g(f P )(f P )
and from (18), that

(25)

s G(p)? 2 o
n

P

8. Due to (22), it is now easy to transcribe the O-estimates applied
loc. ¢it.? (p. 716) into o-estimates, which are to the effect that

(26) F{|G—G|*t—>0as k—> =.
In fact, (26) may be proved as follows:

If # and k are arbitrarily fixed, one rveadily verifies from (22) and from
the definitions of the real additive functions (, G, that

S ; a2 LS n "
3lee—omi=3, % [F]owew + 2, [5] owr

where [#] denotes the integral part of #, the prime of 33’ means that p =y,
and the summation indices p, ¢ run through thosze primes which exceed k
(however, the sums on the rightj are finite sums for every fixed », since

[—TL =0 and I:E] = 0 whenever pg >n and p > n,
rq p

respectively). Congequently,

(26 bis) % 2 | 6(m) — Gu(m)|*
<(x EY4, s SO 5 O)
k< p=n? P ad=p=n P r=q=nlp 4
G(n)?
+1 3 jemaw)+ 3 L
pa=n psk P

8 bis. As to the inner sum in the second of the four terms on the right
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of (26 bis), one sees from (24) that if ¥ is fixed and €'* denotes the maximum
of the function

’ 3 G(q)l
K=q=nlp 4
of pand nontherange P = p=n;n=1,2,-- -, then e® >0 as k— 0 ;

while the absolute value of the whole second term on the right of (26 bis) has,
for every n, the majorant

9 s | G(p) ] B < 2

1
whzp=n P n=pzn P ’
by (23). Finally,

Ls jeme@=2 3 1,by(23).
™ pa=n M py=n
Thus, on keeping k fixed but letting n — o, one sees from (26 bis) that

2

limsup% 3 | G(m) — Ga(m)
m=1

=0
2 F 2
glimsupj( b M) 12y _1__|_1 s 1}_]_ s @(p) )
n0 r<p=nt P at=p=a P " py=n sk P

But p and ¢ are prime numbers ; so that

b -1-<Const. and-l— 2 150

uiépgu p 7 pg=n
as n—> oo. Hence,
M{| G— G |*} = lim sup ( b3 m)-+const.e”“ 4 3 G 20}"
TR0, k< p=nt p>t P

On letting here k—> s, and using the fact ¢® —0 as k— =, one sees from
(24) and (25) that the proof of (26) is complete.

9. Tt is now easy to conclude that f(n) is almost periodic (B*) and
catisfies (8).

In fact, since it was proved in §4 that fi is almost periodic (B*) in
virtue of the convergence of the series (ii), it is sufficient to show that

H{|f—7Fc|?} >0 as k— co.

But the truth of this relation is implied by (19) and (26), since it is clear
from (20) and (21) that

F{|f—fu|? = M{| F—Fe|*}* + #{| ¢ — G |*}L
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Proof of the necessity of the conditions.

What remaing to be proved is that the sufficient condition represented by
the convergence of the two series (i), (ii) of § 1 is necessary as well. Thus,
from now on till the end of the paper, the assumption will be that the f(n)
is any given real, additive function which is almost periodic (B?).

10. Since f(n) has an asymptotic distribution funetion, the fwo series
(I}, (II) of §2 arve convergent. And. in view of (5), the convergence of
(IT) implies that
(27) 3 -1—< .

lfeprlza P

In terms of the given f(n), define an additive function D(n) by placing
(28) D—f—H,
where H = H (n) denotes that additive function for which the double sequence
{{H(p")})} is given by

F(p)s it 1521,
(29) H(p') = < f(p), if I=1 and |f(p)| =1,
0, if I=1 and | f(p)]| < 1,
(p=px and E=1,2,3,- - -). Thus,
0, iflsel,
D(pt)=< 0, ifl=1and [f(p)|=1,

f(p), if 1=1and |f(p)| <1,

and so it is clear from (27) that one obtains two convergent series by writing
D for f in (i)-(ii), § 1. Since the first half of the italicized statement of § 1
was already proved (§5-§9), it follows that D (n) is almost periodic (B?).
Since f(n) is almost periodic (B?) by assumption, one sees from (28) that
H(n) is almost periodic (B?).

In particular, H(n) has a square-average
(30) M{H?*} < + .

11. In what follows, » will denote any of those prime numbers for which
the absolute value of the given additive function f is not less than 1. Clearly,
(27) may be written in the form

: 1
(31) I (1 _-) > 0.
fir |zt *

Since also the density of the quadratfrei integers is a positive number
(= 6x2), a standard application of the sieve of Erathostenes shows that (31)
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may be interpreted as follows: If u. j are positive integers and p is a prime.
let N = N (#, p. j) denote the number of those integers between 1 and # which
are of the form p’s, where s is quadratfrei, is not a multiple of p, and not a
multiple of any of the primes » (defined by | f(r)| = 1). Then there exists a
constant £ > 0 which 1s independent of n, p, 7 and is such that

N —N(np, f) > Bnp.
Hence, it is clear from the definition (29) of the additive funection H (n),
that
Bn
s H(m)*> I = H(p")?
=1 plen '
where the summation indices p(=12,3,5, ) and [(=1,2, - ) yun through
those of their combinations for which p? < n. Thus, on writing this inequality
in the form
H(p")* p ¥ - T
3 < const. — H(m) ; (const. = 8 < ),
pl<n f e m:l

and letting n — 0, one sees from (30) that

(32) 3 :H(Pi)

= p P

where p runs through all primes,

< =%

12. 1In view of (29), the content of (32) is that, on the one hand,

(33) 3 sz
2y P
and, on the other hand,
(34) s [ oo
] . . o lfmlz P
while (34) implies that
[
(35) s @l
lfipiiza P

Finally, as pointed out at the beginning of §10 (cf. §2), the series
(I), (1I) of § 2 are convergent. This means, in view of (3), that

(36) s [ o
It = P
and that also

37 s
Wt g =2 P
Now, the convergence of the series (1) and (ii) of §1 is clear from

(37), (85) and (36), (34), (33), respectively.

f(p) .

1= convergent.
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