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P . ERDŐS

ON THE INTEGERS OF THE FORM xkd-yk

P . ERDÖS* .

In a previous paper, which I wrote in collaboration with Mahler+, it
was proved that, if f (x, y) is a binary form of degree k > 3 with integer
coefficients and non-vanishing discriminant, then the number of integers
not exceeding n representable by the binary form with positive x and y

is Q(n 2 /k) . The proof was simple but not elementary. For the special
form Xk+yk, k odd, I have found an elementary proof which may be of
some interest.

So far as I know, the first non-trivial estimation of the number of integers
not exceeding n of the form xk'-iI -yk is due to Landau+:. He proved that
for even k the number of integers in question is 11(n2/lc/log n) . Later this
result was improved by S . S . Pillai§ to t {n2/k/ (log n)ü}, 0 < a < 1, in the
cases k 1, 2, 3 (mod 4) . The method used in this paper is a refinement
of that of Pillai .

First we prove five lemmas .

LEMMA 1 . Let A and B be arbitrary positive integers, A < B. Write

(1) xk + (A-x)k = yk+ (B-y)k, 0 < x < 2A, 0 < y < 2B.

Then y is a convex function of x .

Proofll . We note first that y is an increasing function of x, since the
left-hand side of (1) is a decreasing function of x, while the right-hand side
is a decreasing function of y. Considering y as a function of x and B,we
obtain
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1
aB 1-(y/B-y)k-'

Differentiating this equation with respect to x, we obtain

a2 y
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aBax {1-(y/B-y)k-1}2 (k 1) `(B y))

	

(B-y)2 ax'

* Received 24 February, 1939 ; read 23 March, 1939 .
t P . Erdős and K . Mahler, Journal London Math . Soc ., 13 (1938), 134-139 .
á E. Landau, Journal London Math . Soc ., 1 (1926), 72-74 .
§ S. S . Pillai, Journal London Math . Soc ., 3 (1928), 56-61 .
11 This proof is due to Dr. W . Strodt .



Hence aB
(log

a increases with x for any value of B. Integrating

with respect to B, from A to Bo > A, we conclude that

(2)

are of the form 2r, r2 . . . r ; d+ 1 .
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xk+ yk

x-}-y
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ax
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increases with x . Since y = x when B - A , this implies that

P>=Bo

increases with x, so that (1) defines as a convex function of x.

LEMMA 2 . The number of solutions in integers x and y of (1) is less than
7A .

Proof. First we show that, if (l) is solvable, 2A > B. It is evident
that both f(A, x) = xk+ (A-x)k and f (B, y) = yk+ (B-y)k are monoton-
ously decreasing for 0 < x < 2A, 0 < y < '-B, and that f (A, u) < f (B, u) .
Thus, if (1) holds, y > x, A-x > B-y, i .e. 2A > B.

Let now (x1, y1), (x 2 , y 2 ),

	

(xr , yr ) be the solutions of (1) . From
Lemma 1 it follows that

yi+1-yi>M-M-1
xi+1-x2 xi--xt_1

We now split the (xi, yi )'s into two classes . In the first class we put the
(xi, y i ) for which one of the equations y, j 1-yi > 2A3, xi+1 -x i > 2A,
holds, and in the second class all the other (xi , yi ) . Obviously the number
of the (x i , yi ) of the first class is less than 2AT . Thus, if the result is
false, the second class contains at least 5A'(xi, yi ) . Thus we obtain from
(2) that there are at least 5A different fractions ui/vi with ui < 2A',
vi < 2A }, an obvious contradiction .

LEMMA 3 . Let k = r ;l r2 . . . rj'-j, where the is are odd primes. Then all
prime factors p, (p, h) = 1, of

(x, y) =1,
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This result is well known* .

LEMMA 4. Denote+	 11

	

pa by 0(m) . Then the number of
p -- 1 (mod r, r2 "j)

integers m < n with (m, k) = 1 and z,G(m) < m ó is greater than c1 n, u.-here
c 1 depends only on k .

Proof . Consider the integers not exceeding n of the form pa, with
p prime, p > n U-, a < n''-, (a, k) = 1, p / 1 mod (r1 r2 ... r;). They ob-
viously satisfy the requirements of the lemma. We estimate the number
of these integers. Denote by O(k, d) the number of integers not exceeding

d and relatively prime to k . Then

P . ERDÖ

E

	

k
p l (mod r x r 2 . . . ri)

	

p
n>-p>n1',

By the sieve of Eratosthenes, we get $

O(k, d) > d 11 (1- 1-) -2°(k) ;
Pik

	

P

thus

	

P > II (1-
P)

	

Y,

	

n --,T(n) 2k,
Pik

	

p lmod(nr2 . . .ri )
n>p>n 6

where 7r(n) denotes the number of primes not exceeding n . But, by the
prime number theorem or by a more elementary result,

z

	

1 > c2~

	

7T (n) = o(n) ;
p 1 mod (r l r 2 . . . "i) p

n>p>n

hence

	

P > c2 n tl 1- 1) -o(n) > c1 n,ri

which proves the lemma .
LEMMA 5 . Let a 1 < a2 . . . < al < m be integers with t > c, m, then §

s
~(ai) > C4M2 .

i=1

* L . Euler, Comm. Arith . Coll . (Petropoli. 1849), (1), 50 and (11), 523 .
t p-11m means that palm but jo-i' -m .
$ v(k) denotes the number of different prime factors of k.
§ q,(a ;) denotes Eulei's -function .
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Proof. First we show that the number of integers s not exceeding m
for which ~(s) < c am is, for suitable c„ less than Lc,m . Obviously

m

	

/

	

1 [m/P]

	

mM

	

/

	

1 m/p
II ~(v) = m! TI 11- -)

	

>	II 1 1- )V=1

	

P-<na

	

p

	

em P<m

	

p

m ~ /

	

m
> „i H, 11- C2 > mm e, m.

e P=1

	

P

But if our result is not true we should have

which is impossible if c513 < c7
Thus we obtain

which proves the lemma .

THEOREM . The number of integers not exceeding n of the form xll+yk,
where k > 3 is odd and (x, y) = 1, is greater than c$ n2/k.

Proof . Denote by a1 < a 2 < . . . < al the integers a with 2 < a < n 1/k ,
(a, k) = 1 and 0(a) < a o . Consider the integers

(3)

(4)

m
11 ~(v)< mm q'c- -,
V=1

t
Y- ~(ai)>e, , m 2 =e
i=1

i=1

xk +yk

s ~(ai) > esne/k,

xk+yk = nk +vk,

with x+y = a„ (x, y) = 1, x < Zat (i=1, 2, . . ., l) . These are obviously
all less than n .

The number y of these integers, not necessarily all different, is equal to

by Lemmas 4 and 5 .
We now estimate the number 6 of solutions of

with ,

	

x+y = ai, (x, y) = 1, u+v = a,, (u, v) = 1,

i<j ; u, j=1, 2, . . ., l ; x<2'ai, u<'a, .
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Write (4) in the form

(5 )

	

Y (ai)
a

xk+yk

	

nk+vk

0(aá ) x+y

	

0(a,) u+v .

By Lemma 3, (5) is possible only if

Hence, finally,

which means that, for fixed at , there are at most
ni/k

	

ni/k

a,lg,(a,) < a,1-

possible values for a, ; thus, by Lemma _>, the number 8 t of solutions of
for fixed ai is less than

n1/k

	

n 1/ k7ai '

	

„ < 7

	

.ati~

	

ai

(6)

	

8= Z 8 i < 7nI/k Y	 1 < 100n2/k-1/(5k) ,
i=1

	

i_nilk Z'

Obviously the number of different integers represented. by (4) is not less
than*

y-8 > c s n2/k-100n~k > C 8 , 1 2/k ,

which proves the theorem .
By similar but slightly more complicated arguments we can prove that

the number of integers not exceeding n of the form xk+yk, x > y > 0, is
equal to

2

	

(n-xk)1/k+0(n2/k) .
x < nl'k

From this result it evidently follows that the number of integers m not
exceeding n for which the equation m = Xk+yk, x > y > 0, has more than
one solution is o(n 2 /k) .

The University,
Manchester .

* Denote by f(m) the number of times that m is represented by (3) . Then

n:if(m)=y and T (f( 2 )1 =S [if f(m)-1, (f(~ )1 =~~ ;

thus it is clear that

	

1 y-S.
f #o

(5)
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