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In the present note we state without proofs some results concerning 
additive functions, the proofs of which depend partially on statistical 
methods. A function f(m) is called additive if for (ml, m) = 1 one has 
f(mr*ms) = f(mr) + f(mz). We assume furthermore that fw) = f(ip) 
and 1 f&) 1 < 1 for every prime p. None of these assumptions is essential 
but they simplify the statement of Theorem A.’ 

THEOREM A. iht f($) be S&Z thut 

diverges. Then the density of integers for which 

f(m) < C fG2 + w v!SFG ) 
#Cm p 

is efpd to 7r+ .+? exp ( -y2)dy for any real W. 

The proof depeids on the following two lemmas. 
LEMMA 1. Let pk be the kth prime und let 

h(m) = Em f@>. 

0 6 9, 
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Further let 6(k) be the density of the integers which satisfy the inequality 

(1) 

Then 

lim 6(k) = *-I/’ S exp (-y2)dy. 
k+m --m 

The proof depends on the use of Fourier transforms. 
LEMMA 2. Let n = kvCk), where p(k) tends to m as k tends tom arbitrarily 

SlOWb$ 
Let $(k, n) be the number of integers 6 n satisfy&g (l), and let 6(k, la) = 

#(k n>/n. 
Then 

lim 6(k, n) = llmS(k) = T-“’ j exp (-y2)dy. 
kdm -co 

In order to deduce this lemma from the previous one we need Brun’s 
method. 

The proof of Theorem A now follows easily by elementary methods2 
From Theorem A, putting w = 0, one immediately deduces the following 

result: 
The density of the integers which satisfy the inequality 

is equal to */2, 

In the special case f(m) = Y(WZ)(Y(WZ) denotes the number of different 
prime divisors of m) this was proved by Erd6sa 

c 
1 

1 It sufkes to assume that p conva-ges. 
If(P 

2 Compare P. ErdBs, “On a Problem of Chowla and Some Related Problems,” Pr~t. 

Camb. PhiZ. Sm., 32, 530-540 (1936). 
3 “Note on the Number of Prime Divisors of Integers,” Jour. Lo& Math. SOL, 11, 

308-314 (1936). 


