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1. Let k 2 3 be an integer. Let Nik’(n) denote the number of integers not 
exceeding n that are representable as the sum of s positive integral h? powers. 
We are concerned in this paper with inequalities of the form 

NJk’(n) > nnu, a = c&c, s), 

valid for all large n. Such inequalities are of great importance in the applica- 
tion of the Hardy-Littlewood method to Waring’s Problem. 

Until recently, practically the only such inequality known was that of Hardy 
and Littlewood’ 

(1) N’“‘(n) > naivr * f ~1=1-(1-;)(l-;)r2, 

valid for any E > 0 and n > no(c) .2 
This has been improved upon independently by the two authors of the present 

paper, using different methods. We give here an account of t’he met’hod of 
Erdos, with modifications due to Davenport.3 

2. DEFINITION. s positive numbers XI , . . . , X, satisjying x1 2 X2 2 a . . 2 A* 
are called udmissible exponents for kth powers if the number of solutions of 

(2) x:+ *a. + 2: = y: + * - . + y: 

in integers subject to 

(3) Pi’ < xi,yi < 2PX’; *-a ; PA” < x*, yz < 2PXe 

is O(P hl+...+h,+r) as p ---f oo,fo?‘ any E > 0. 
It is easily seen4 that, if ~1, . . . , X, are admissible exponents for JG”“s, power 

then 

Np(n) > $-c, Q: = x1 + /‘X’ + X8, 
1 

for any E > 0 and n > no(e). 

1 See, for example, Landau, Vorlesungen zi'ber Zalentheorie, (Leipzig, 1927), 1, Satz 348. 
2 For s = 2, Erdijs and Mahler (Journal London Math. Sot., 13 (1938), pp. 134-139) have 

proved that iVik’ (n) > c+‘~, where c > 0 depends only on k. 
3 The results of Davenport are in course of publication in the Proc. Royal Sot. An 

account of the particular case k = 4, s = 3 has appeared in the Comptes Rendus, 207 (1938), 
p. 1366. 

4 A formal proof is given in Davenport’s paper in PTOC. Royal Sot. 
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In what follows, cl , cz , 1 A . denote positive numbers depending only on k and s. 
THEOREM 1. Let 19 = 1 - k-‘. Then i, X, AI?, X0’, . . . , MS-z are admissible 

exponents for kth powers, provided X satisjies 

(5) kX - (k - 1) 5 M”-2. 

PROOF. (1) Suppose that s = 2. It is well known that the number of 
representations of an integer m as yf + I/; with positive integral yl , y2 is O(m’), 
for any c > 0. Hence any two positive numbers are admissible exponents for 
kth powers. Thus the theorem is true for s = 2. 

(2) Suppose that s 2 3, and that the theorem is true with s - 1 in place of s. 
Let 21, . . . , x8 , yl , . . . , y8 satisfy (2) and (3), where X1 = 1, h2 = X, k = 

xe, . - . , X, = X0’“. Since 

1 x! - Y:J > pk-llxl - Yll, 

we have 

PkX 
I x1 - yr 1 < Cl pk--l 5 c1px8’-2) 

by (5). Hence the number of possible pairs x1 , y1 is O(P1+x8"-2). The 
number of possible sets of values for z1 , y1 , x2 , z3 , - . . , XA is therefore 
O(pl+“+X8+...+X8~-~ ). For fixed values of these variables, (2) has the form 

A = $4: + yt + . * . + y/9 - 2: 

= y: + o(P”“8), 

where A is fixed. This has only O(1) solutions y2 with Px < y2 < 2Px, since 

(Yz + 1)” - y; > (PX)k--l = p”h8. 

For fixed y2 , the argument can be repeated (if s 1 4) and shows that there 
are only O(1) possibilities for y3 , and so on generally. Finally, (2) takes the 
form 

B = y: - x: ) 

which has only O(P’) solutions, unless B = 0. Hence the total number of 
solutions of (2), subject to (3), with zs # y8 is O(P’f”+~8’..‘fX8s-2+‘). 

For the solutions with x8 = y8, we observe that, since 

kX - (k - 1) S XBSs 5 XI~‘-~, 

1, x, xe, * . * ) XBsP3 are admissible exponents for lath powers (by the case s - 1 
of the theorem). Hence the number of solutions with zs = ys is 

O(pl-tX+X8+...~X8*-3+r+XB~-2~~ 

This establishes Theorem 1. 
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COROLLARY. FOr CLny E > 0, and n > m(e), 

(6) N!k’(n) > n-, ar,=l- 
s-2 

PROOF. Taking X = (k - l)/(k - 19”~“), we have 
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1 
> 

a-2 

ii - 

on simplification. 
Comparing (1) with (6), it is plain that CQ > LYE (provided s > 2). 

3. %EOREM 2. 1,1 - & 1 - ; - & are admissible exponent.8 for kth powers. 

PROOF. Let XI , y1 , z1 , x2 , yz , zz satisfy 

(7) x: + yt + 2: = 2; + Yi -I- 2: , 

(8) 
P < Xl , x2 < 2P, P1--k-8 < y1, y/z < 2P’-“+, 

Pi-k-‘-k-p < 21) 22 < 2P1-k-‘-k-P. 

The number of solutions of (7), (8) with x1 = x2 is 
O(pl+‘-k-~+‘-k-~-k-~+f~~ 

Hence we need only consider solutions with x2. > XI . By a similar argument, 
we can also suppose that z1 # z2 . 

Writing x2 = ~1 + t, (7) becomes 

(9) (Xl + t>” - x: + y; - yz = 2:: - 2; . 

Plainly 

tp’“-’ < (51 + t)” - 2: < y: + 2: < 2(2P’-k-2)k, 

whence 

(10) 0 < t < C2P1-k-‘. 

For fixed t, yl , Y/Z , (9) has the form 

(11) (Xl + t)” - x; + A = O(Pk--l+l). 

Since 

((Xl + 1 + t)” - (Xl + l)k) - {(XI + t>” - 5:) > CdPk-2, 
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the number of values of 21 satisfying (11) is 

0 ~?g+l)=o(t;+l). ( 
Hence the number of sets 51) t, ~1, 92 satisfying (9), (lo), (8) is 

0 p2w-2) 

( = ( 

p-k- 
-++1 

o<t<c*P1-+-1 t >> 

= O(pz(l-k-*)+(l-b-l)+r), 

Also, for fixed values of these variables, (9) has only O(P) solutions in 21, 22 
with z1 z z2 . 

Hence the number of solutions of (7), (8) is 
O(pl+~l-k-~)+~l--b-l--L-~~+f), 

which proves the theorem. 
COROLLARY. For any e > 0 and n > m(e), 

i@‘(n) > n*“-‘, 3 k-l-2 
a!3 = - 

k --p-- 

The value of CQ given by t,he Corollary to Theorem 1 in the case s = 3 is 

3 k+l 
@2 = c - J$(k” - k + l-j * 

It is easily verified that cz3 > CY~ . 

4. The results above obt’ained for NLk’(n) are not as precise as those of 
Davenport when k S 5, but are at any rate more precise when k 2 6 and s = 3. 
It may be remarked that the case k = 4, s = 4 of the Corollary to Theorem 1, 
namely 

Nj4’ (n) > n(s3/llo)-r, 

is su5cient for the proof that G(4) = 16, though not for the further results 
announced by Davenport.’ 
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6 Comptes Rendus, lot. cit. 


