ADDITIVE ARITHMETICAL FUNCTIONS AND STATISTICAL
INDEPENDENCE.*

By Pavrn Erpis and AUREL WINTNER.

Introduction. The object of this paper is to solve the problem* as to
the existence of an asymptotic distribution function of an arbitrary (veal)
additive arithmetical function f(n), and to embed this problem into the
general theory of infinite convolutions.? This aim will be reached by an
approach which subjects f(n) to no a priori limitation whatever. Actually,
the sufficient condition found loc. cit.t, 11T for the existence of the asymptotic
distribution funetion turns out to be a necessary condition as well.

The result to be obtained is to the effect that the statistical independence
of the components which belong to the different prime numbers is such as to
malke the condition of convergenee in relative measure not only sufficient but
also necessary for the existence of an asymptotic distribution funetion.®

The crucial point to be proved is that, on the one hand, f(n) cannot have
an asymptotic distribution funection distinet from the infinite convolution
which is formally associated with f(#) ; and that, on the other hand, the mere
convergence of this formal convolution implies the existence of an asymptotic
distribution function.

In particular, the theory of divergent infinite convolutions?* will become
applicable to every f(n) which does not possess an asymptotic distribution
function.

1. For a given function g(n) defined for n =1,2,- - -, let M{g(n)}
denote the limit of the ratio of g(1) + g(2) 4+ - -+ + g(n) and n, as n — =,
if this limit exists. If § iz an increasing sequence of positive integers, let
S(n) denote its characteristic function, i.e.,, the function defined for
n==1,2,+ + - by placing S(n) =1 or §(n) = 0 according as n is or is not
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contained in the set S. If the average M{S(n)} exists, it is called the density
of §. Generally, let M {S(n)} denote the upper limit of the ratio of S(1)
+8(2) +-- -+ 8(n) and n, as n— 0.

For a given real-valued function f=j(n) and for any real number z,
let S denote the set of those n at which f(n) < 2. If there exists a monotone
function ¢ =o(2), — w0 < & < - «, which satisfies the boundary condi-
tions o(— ) =0, o(+ ) =1 and is such that, at every continuity point
z of o, the limit M{S;(n)} exists and equals o(z), then f is said to have an
agymptotic distribution function, o.

2. For a given function f(n) and for every positive integer %, define a
function f* (n) by placing

{0, if n5=0 (mod pi)
W (n) = - >
(2 PR =1 #(m1), it pdln and peatn,
where pp denotes the k-th prime number. Put

@ feln) =31 (n).

Tt is clear that a function f(n) is additive if and only if so is each of the
functions f;(n), fz(n), - - and one has

(3) f(n) =3 (),

(where f(n) = fu(n) for every k > hy, if hy is sufficiently large for a fixed n).
In fact, the additivity of f(n), i. e., the property that f(n.n.) = f(n.) + f(n2)
whenever (n, n;) = 1, is equivalent to the property that, for arbitrary posi-
tive integers k; fi,* * *, jrs

k k
(1) f(I pif) = = f(pi?+), while f(1) =0.
i=1 {=1

In what follows, f(n) will denote an arbitrarily given real-valued additive
function.

3. Consider first the particular case of those functions f(n) which are

bounded on the sequence of all prime numbers py, ps, - *
(5) | f(p)| < const.
Then f(n) cannot have an asymptotic distribution function unless the
series
(6) Ef(i)z is eonvergent.

In fact, suppose, if possible, that 3f(p)?/p = c0. Then, if  denotes any
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real number, a recent theorem ° states that the density (§ 1) of the sequence
of those natural numbers m which satisfy the inequality

x o, . F(p)? )
fmy <3, [P o p 3 [

exists and is represented by the normal distribution function =3 f exp — t3di.
-00

This clearly implies that if « denotes any positive number, the density of the

sequence of those natural numbers m which satisfy the inequality | f(m)| < a

is 0. But then f(n) does not have an asymptotic distribution function, since

the boundary conditions of § 1 are violated. This completes the proof.

4. The assumption (5) also implies that f(n) cannot have an asymptotic

distribution function unless the partial sums of the series E}e(pﬂ form a

bounded sequence of numbers.

In fact, if this sequence were not bounded, it would follow from (6) by a
straightforward application of the method of Turdn,® that there exists for
every e > 0 a sufficiently large (' = C > 0 in such a way that the number of
those positive integers m which satisty the condition

—0+3 D pmcoy 3 12

s<m P p<m P
exceeds (1 — e)m for every sufficiently large m. But then the definitions of
§ 1 imply that f(n) cannot have an asymptotic distribution function. This
contradiction completes the proof.

5. Next, it will be shown that if (5) is satisfied, f(n) cannot have an
asymptotic distribution function unless the series

f(»
() 3=

is convergent,
The proof of (7) will be based on the estimate
(8) L § f(m)* < Const.,
N =1

which will be proved in § 6. Suppose that (8) has already been established.

It is clear from (8) that for every ¢ >0 and for every n one has
3 | f(j)| < en, if the summation index j runs through those positive integers
j which satisfy both inequalities § < n, | f(j)| = - Const. It follows, there-

5 P, Erdos and M. Kae, Proceedings of the National Academy, vol. 25 (1939), pp.
206-207.
¢ P, Turan, Journal of the London Mathematical Society, vol. 11 (1936), pp. 125-133.
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fore, from the definitions of § 1 that f(n) cannot have as asymptotic distribu-
tion function unless the limit M {f(n)} exists. Sinee f(n) is supposed to have
an asymptotic distribution function, and since 37{f(n)} is defined as the limit
of the ratio of f(1) + - - 4 f(n) and n, it follows that if

I}’: f(m) —n X e o)

=1 p=n P
is true, then so iz (%). But thiz o(n)-estimate is certainly true In case the
additive function f(n) is such that f(p*) = f(p) holds for every prime p
and for every & = 2, since in this case

= E'- = () o(r
Siem =3 [T]1m) =n 3 T 4 o)

in virtue of (5). Fmally, it iz known® that Jrhe case of any f(n) satisfying
(5) may be reduced to the case in which not only (5) holds, but also

F(#*) =i(p)-

Thisg completes the proof of (7) on the assumption (8).

8. In order to prove (8), notice first that

fmr =33 [ L) it + 3 [5] 100

where the summation indices p, g of the double sum run through all pairs of

=

1

W i o s
distinet primes. Hence, = 3 f(m)® cannot exceed
N om=1

(3,000 e 5 [0 5 4L s jrppp)+ 3 [EE

L P oagp=n 4 7 p=n P

=

Since the partial sums of the series f;p} are bounded (§4). it follows that

—iﬂmﬁ~ou)+0(§inﬁﬁ mn)
f(p)®

1
+y L oK 1+ 3 B

Consequently, from (5) and (6),

)}i 1

1 1
13 =0 +o( 3 )+20( 3 1+o.
n fp‘:r!p e qr=n
This clearly implies (8). Thus, the proof of (7) is now complete.
7. For any y = f(n), define y* = f*(n) by placing
{9) y*=y or y* =1 accordingas |y| <1l or |y|=1.

" P. Erdés, loc. cit. t, I, p. 124,
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Then an f(n) which satisfies (5) cannot have an asymptotic distribution
function unless the series

are convergent.

(10) 10 s FOF
Py »
In fact, the convergence of the second of the series (10) is clear from (6)
and (9). On the other hand, (%) and (9) show that the first of the series
(10) is certainly convergent if 3’ | f(p) |/p < w, where the summation X
1anges over those primes p at which 'f(p) | = 1. Hence, it is sufficient to
assure that 3F(p)%/p < «. But this is clear from (6).

8. It will now be easy to prove the following theorem:

(1). An additive function f(n) has an asymptotic distribution function
if and only if (10) is satisfied.

That (10) is a sufficient condition for the existence of the asymptotic
distribution function of f(n), has been proved by Erdde, loc. cit.r, III. On
the other hand the necessity of (10} is established by §7 for those f(n)
which satisfy (5). Thus, (i) will be proved by showing that the result of § 7
kolds without the restriction (5) also.

Suppose, therefore, that f(») has an asymptotic distribution function,
and that there does not exist a constant which satisfies (5) for all primes.
It may be assumed that there does not exist a number K with the property
that the sum of the reciprocal values of those primes p at which | f(p) | > K
is a convergent series. In fact, if this series ig convergent for some sufficiently
large K, then the truth of the statement (10) may be obtained by a repetition
of the corresponding considerations. applied loc. cit.”

9. (onsequently, it may be assumed that there exists an infinite sequence
of primes, say p*, p'®.- - -, in guch a way that, on the one hand, the sum
of the reciprocal values of all these p'/’ is a divergent series, while the sum of
the squares of these reciprocal values is less than }, say; and, on the other
hand, one has |f(p"') |— e, as j— . Now, the existence of such a
sequence p‘*’, p'®,- - - is incompatible with the existence of an asymptotic
distribution function for f(n).

In fact, if f(n) has an asymptotic distribution funetion, then there exists,
by §1, a sufficiently large A > 0 which has the property that the density of
the set of those integers n which satisfy |f(n) | =A exists and does not
exceed 4, say. Thus, it is clear from the choice of the sequence p™, p, -+,
that the density of the set of those integers n which satisfy the condition
|f(n) | = and are not divisible by the square of any of the primes
p™, p@ - - -, cannot be less than }. Hence, an choosing the value of A
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fixed, one sees that the sum of the reciprocal values of those integers m which
satisfy both inequalities |f(m)|=A,m =n and are not divisible by the
square of any of the primes p™, p®, - - - must exceed }logn for every
sufficiently large n. Now, it is readily seen from the elementary considerations
which were used in the proof ® of the sufficiency of the condition (10}, that
one can find two integers m, say m, and m,, which satisfy the condition
{f(m) | = A and are such that, on the one hand, m, = m.d for a suitable
integer d and, on the other hand, p'¥ | d for a suitable element p‘® of the
sequence p™, pt, - -,

Clearly, this implies a contradiction whenever the prime p‘? satisfies the
condition f(p'?) > RA. And this condition may be satisfied by a suitable
choice of pt¥. In fact, the value of A has been fixed, while | f(p?) | = oo,
as j—> o0.

This completes the proof of (i).

10. Let f(n) be an arbitrary additive function, which need not have an
asymptotic distribution function. On choosing any fixed =1, and denoting
by w1, - -, wx real variables each of which varies continuously from — e to
-+ oo, one readily verifies from the definitions (1)-(2), that limits

k
Mexpi = u;fP (n)} and M{expiu;fP(n)}; j=1,-- -,k
i=

where M{g(n)} =1lim (g(1) 4+ - -+ g(n))/n, exist uniformly in every
fixed (@, - +,u)-sphere u;® +- - - - u* < const,, and that

k k
(11) M{expi 2 w;f¥ (n)} =1 M{expiu;f(n)}.
i=1 i=1
This means ? that the &k functions f& (n), - -, f® (n) are statistically

independent, and implies,'® therefore, not only that each of the additive funec-
tions (1) and (R) possess an asymptotic distribution function, say «® (z)
and ow(x), but also that

&
(12) L(u;or) =M L{u;e'P) for — 0 <u <+ oo,
j=1
L(u;p) denoting the Fourier-Stieltjes transform
+20
(13) Liusp) = | ewedp(a).

In faet, if g(n) has the asymptotic distribution function p(#), then

# P. Erdés, loc. cit. t, 111, Proof of Lemma 3.
® P, Hartman, E. R. van Kampen and A. Wintner, loe. cit. 2, § 8.
 7hid., § 7.
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(14) M{expiug(n)} =L(u;p);

go that (12) follows from (11) by choosing all the w; equal (=wu). And
(12) means that the asymptotic distribution function ex(z) of fu(n) is the
convolution

(]5) o =o'l % g2 % . . .2,

cf the asymptotic distribution functions ¢'??(z) of the terms 7 () of fr(z),
i.e., of the sum (R) which belongs to the given f(#) in virtue of (1). Tt is
understood that the convolution, o * 8, of two distribution functions «, 8 is
defined as the distribution function

+00

#(2) * B(2) = [ a(z—y)dB(y); sothat L(u;a+ B) = L(u; a)L(u; B).

-00

It is readily verified that the asymptotic distribution function % (z)
of the additive function (1) is the step function which has at z = f(p™) the
jump p™(1— p~*), where p denotes the k-th prime number and m =0,1,-- -,
It is understood that the values f(p™) belonging to the same p = gy need not
be distinct for distinet m. Thus it is clear from (13) that

00
(16) L{u;e™) = (1 —p™) 3 pexp iuf(p™), where p = p..
m=0

10 bis. It should be mentioned that the italicized result of § 10 becomes
wrong if statistical independence is meant in the sense of Kac and Steinhaus,**
instead of the gense defined by Hartman, van Kampen and Wintner.> TIn fact,
one can readily choose a sequence of numbers f(2), f1(R%), fV(R°%), - -
in such a way that for the corresponding function %) (n), determined by (1),
the limit M {8,(n)} mentioned at the end of § 1 does not exist at = =0, say.

11. Let the additive function f(n), the positive integer & and an ¢ > 0
be arbitrarily given. Let Si¢ denote the set of those positive infegers n at
which the function (2) satisfies the inequality | f(#) — fi(n) | > e Suppose
that, in the notations introduced in § 1, one has # {Sif(n)} —0, az k — .
Suppose finally that this limit relation holds for every fixed e > 0. Then the
functions fi(n), fa(n), - - are said to tend to f(n) in relative measure.

The following theorem will now be proved:

(ii). An additive function f(n) has an asymptotic distribution if and
only if the function () tends, as k — 0, to f(n) in relative measure, in which

= M. Kac and H. Steinhaus, Studia Mathematica, vol. T (1937), pp. 1-15.




T20 PAUL ERDIS AND AUREL WINTXNER.

cose the asymplotic distribution function of fy(n) ftends, as k— =, fo the
asymplotic distribulion funclion of f(n).

In fact, if fe(n) tends to f(n) in velative measure, then 7(n) has an
agymptotic distribution funetion which is the limit of the asymprtotic distribu-
tion function of fi(n). This follows from a general theorven,'* since every
fi(n) has, by §10, an asyvmptotic distribution function. Conversely, if f(n)
has an asymptotic distribution function, then (i), §8, shows that (10) is
satisfied. Since (10) is known ™ to be sufficient for the convergence of fi.(n)

to f(n) in relative measure, the preof of (ii) is complete.

12. On comparing the definition (16) of ¢ (&) with a general cri-
terion ** for the convergence of an arbitrary infinite convolution. one readily
sees that (10) is precisely the condition for the convergence of the infinite
convolution
(17) PRSUUR O § Rt §. I

But the k-th approximating conveolution of (17) is the asymptotic distribution
function (15} of fi(n). Hence, (i) and (ii) imply the following theorem:

(ii1). An additive function f(n) has an asymptotic distribulion if and
only if the infinite convoluiion (11} is convergent. Furthermore, if f(n) has
at all an asymptotic distribution funetion, the latter is necessarily (17).

13. As pointed out at the end of § 10, the distribution {unction ¢** (x)
is a step function. Hence, on combining (iii) with a general result'® on
infinite convolutions of step functions, one obtains the following theorem:

(iv). A distribution function which is the asymptolic distribution func-
tion of an additive function f(n) either is a step function or it is everywhere
continuous, and in the latter case it 1s either purely singular or absolutely
continiuous.

It is a rather intricate problem, at least in general, to distingnish between
the cases of absolutely continuous and purvely singular behavior.'® On the
other hand, the case of mere continuity is completely characterized by the
following theorem: 7

2B, Jessen and A. Wintuer, loc. ¢it. %, Theorem 24.

P, Erdds, loe. eif.?, ITT, Lemma 1.

* B, Jessen and A. Wintner, loe. cif. 2, Theorem 34.

¥ B. Jessen and A. Wintner, loe cif. ®, Theorem 84.

18 There are two extreme eases in which sueh a distinetion is not too diffieult; ef.
P. Erdos, American Journal of Wathematics, vol. 61 ({1039}, pp. 722-725.

Y If use iz made of (i), the criterion (18 also follows as a consequence of the
results obtained by Erdés, loe. cif. 3, TII, by direet considerations.
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(v). A distribution function which is the asymplotic distribution func-
tion of an additive function f(n) has no discontinwities if and only if

(18) = : is divergent.
flpyso P

In fact, a general theorem of P. Lévy'® states that a convergent infinite
convolution p) % pt2) % - -+ of distribution funections p™ is continuous at
every  if and only if the infinite produet IIdi = 0, where d; denotes the
largest jump (0 = d; = 1) of p'®(2). On the other hand, (16) shows that
the largest jump of o'® () is at most 1 — p=* 4 p~2 if f(p) =<0, and at least
1—p2if f(p) =0, where p = pr. Hence, (v) is implied by (iii).

14. By the spectrum of a distribution function p=p(2), —w <=z
< + o, is meant the set of those 2 in the vicinity of which p is not constant,
1. e., of those & for which one has p(z—¢) < p(2 4 ¢) whenever ¢ > 0.

(vi). If the additive function f(n) has an asymptotic distribution func-
tion, the spectrum of the latter is identical with the closure set of the values
attained by the function f(n) for n—=1,2,- + +,

In fact. (16) shows that (vi) iz certainly true in the particular case
f(n) =f%®(n). Hence, on combining (iii) with a general theorem,’® one
gees from (3)-(4), where f'® (1) = 0, that (vi) is true for an arbitrary f(n).

15. Further results may be obtained by combining (iii) with the theory
of divergent infinite convolutions.?®

THE INSTITUTE OF ADVANCED STUDY,
THE JoHNs HoPRINS UNIVERSITY.

' P. Lévy, Studia Mathematica, vol. 3 (1931), pp. 119-1565, Théoréme XITI, Another
proof of Lévy's theorem has recently been communicated to one of us by Professor B.
Jessen,

For a unified treatment of Lévy’s theorem and of all of the convolution theorems
used above, ef. a paper by E. R. van Kampen, which will appear in the American
Journal of Mathematics.

* B. Jessen and A, Wintner, loe. eit. 2, Theorem 3.

* E. R. van Kampen and A, Wintner, loc, eit. ¥, Theorems 4-9, and the investiga-
tions of P, Lévy, referred to there.
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