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Introduction. The object of this paper is to solve the problem 1 as to 

the existence of an asymptotic distribution function of an arbitrary (real) 
addit& arithmetical fun&ion f(n), and to embed this problem into the 

general theory of infinite convolutions.” This aim will be reached by an 
approach which subjects f (.~2) to no a priori limitation whatever. Actually, 

the sufficient condition found Zoc. cd .I, III for the existence of the asymptotic 

distribution function turns out to be a necessary condition as well. 

The result t,o be obtained is to the effect t,hat the statistical independence 

of the components which belong to the different prime numbers is such as to 
make the condition of convergence in relative measure not only sufficient but 

also necessary for the existence of an asymptotic distribution function.3 
The crucial point to be proved is that, on the one hand, f(n) ca.nnot have 

an asymptotic distribution function distinct from the infinite convolut.ion 

which is formally associated wit.h f (72) ; and t,hat, on the other hand, the mere 
convergence of this formal convolut,ion implies the existence of an asymptotic 
distribution function. 

In particular: the theory of divergent infinite convolutions 4 will become 

applicable to erery f(n)) which does not possess an asymptotic distribution 

function. 

1. For a given function g(n) defined for 1~ = 1, 2,. * . : let X{g(n)} 

denote the limit of the ratio of g(l) + g(2) +. * . + g(n) and ,>a, as ,?L+ CC, 
if this limit es?ist,s. If 8 is an increasing sequence of positive integers: let 

S(12.) denote its characteristic function, i. e., the function defined for 
7% = 1, 2, . . . by placing X(n) = 1 or X (la) = 0 according as n is or is not 

* Received March 23. 1939. 
I Cf. P. Erdijs, I, Journal of the London Yathematical Society, vol. 10 (1936), pp. 

120-126; II, ibid., vol. 12 (1937), pp. 7-11; III, ibid., vol. 13 (1938), pp. 119-127. In III, 
further references are given. The earliest instance of the treatment of a non-trivial 
case, that of (the logarithm of) the ratio @ (n)/n belonging to Euler’s +-function, is 
due trr 1. Schnr (cf. I. Schoenberg, Yathematische Zeitschrift, vol. 28 (1928)) p. 194). 

z Cf. B. Lessen and A. Wintrier, Trumactioss of the American Mathematical Xociety, 

vol. 38 (1935), pp. 48-88. 
3 Cf. P. Hartman, E, R. van Kampen and A. Wintrier, American Journd of Nathe- 

matics, vol. 61 (1039), pp. 476-486. 
* Cf. E. R. ran Kampen and A. Wintrier, American Jowwal of Mathematics, vol. 59 

( 1937)) pp. 635-654. 
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contained in the set X. If the average M{X (1%) } exists, it is called the density 
of X. Generally, let S-(8(n) } denote the upper limit of the ratio of S( 1) 

+ f(2) f. . * + X(n) and 7~, as 7-b 9 co. 

For a given real-valued function f = f(n) and for any real number 2, 
let 5, denote the set of those n at which f (G) < 2. If there exists a monotone 
function CT= V(Z), - co < x < + co, which satisfies the boundary condi- 
tions u(- w) =0, a(+ w) =1 and is such that, at every continuity point 

x of U, the limit M{&‘,(n) } exists and equals U(X), then f is said to have an 
asymptotic distribution function, g. 

2. For a given function f(n) and for every positive integer k, define a 
function ffkJ (YL) by placing 

where pl, denotes the k-th prime number. Put 

k 

fk(?t) = r, f’j’ (n). 
j=l 

It is clear that a function f(m) is additive if and only if so is each of the 

functions fl(n),f2(n), * . and one has 

(where f(n.) = fk(n) for every E > h,, if h, is sufficiently large for a fixed 71.). 

In fact, the additivity of f (.n), i. e., the property that f (n,n,) = f(n,) + f (.wz) 

whenever (nl, n2) = 1, is equivalent. to the property that., for arbitrary posi- 

tive integers k; jl, ’ ’ ’ , jk, 

(4) f(%p$*) =silf(pi’i), while f(l) = 0. 

In what follows, f(~) will denote an arbitrarily given real-valued additive 
function. 

3. Consider first the particular case of those functions f(n) which are 

bounded on the sequence of all prime numbers pl, ~2,. . . , 

(5) I f(P) I < const* 

Then f(n) cannot have an asymptotic distribution function unless the 

series 

(6) I: f(p>z is convergent. 
P 

In fact, suppose, if possible, that 3#f( p) “/p = 00. Then, if o denotes any 
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real number, a recent theorem 5 states that the density (5 1) of the sequence 

of those natural numbers m which satisfy the inequality 

exists and is represented by the normal distribution function ~4 S exp - Pdt. 

This clearly implies that if a denotes any positive number, the bmensity of the 

sequence of those natural numbers m which satisfy the inequality 1 f(m) 1 < a 
is 0. But then f(n) does not have an asymptotic ‘distribution function, since 

the boundary conditions of 5 1 are violated. This completes the proof. 

4. The assumption (5) also implies that f(n) cannot have an asymptotic 

f(P) distribution function unless the partial sums of the series 2 - form a 
P 

bounded sequence of numbers. 

In fact, if this sequence were not bounded, it would follow from (6) by a 
straightforward application of the method of Turan,B that there exists for 

every E > 0 a sufficiently large C = C, > 0 in such a way that the number of 
those positive integers m which satisfy the condition 

-c+ 8 f(p) - < f(m) < C +,<rmfy 
P<m P 

exceeds (l- e)m for every sufficiently large m. But then the definitions of 

Qlimplythatf( ) n cannot have an asymptotic distribution function. This 

contradiction completes the proof. 

5. Next, it will be shown that if (5) is satisfied, f(a) cannot have an 

asymptotic distribution function unless the series 

xf(p) 
P 

is convergent. 

The proof of (‘7) will be based on the estimate 

(8) t Jill f (m)2 < Const., 

which will be proved in 5 6. Suppose that (8) has already been established. 

It is clear from (8) that for every E > 0 and for every n one has 

4 1 f(j) 1 < m, if the summation index j runs through those positive integers 

j which satisfy both inequalities j < n, / f(j) j 2 E-I G Conk It follows, there- 

6 p, Er&js and M. Kac, Proceedings of the National Academy, vol. 25 (1939), pp. 

206-207. 
6 p. Turin, JoumaZ of the Lo,zdon Mathematical Wociety, vol. 11 (1936), pp. 126-133. 
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fore, from the definitions of 8 1 that f(’ n cannot have as asymptotic distribu- ) 
tion function unless the limit X{f(71)} exists. Since f(n) is supposed to have 
an asymptotic distribution fur&ion, and since W{f@) > is defined as the limit 

of the ratio of f(l) +. . . + f(n) and n, it follows that if 

$ f(m) --n r, l’(p) - = 0 (72) 
,?&=I i&z-n P 

is true, then so is (7). But this o (11)~estimat’e is certainly t’rue in case the 
additive function ~(CJZ) is such that f(p”) =f(p) holds for every prime p 

and for every k 2 8, since in this case 

in virtue of (5). Finally, it is known i that the case of any f(n) satisfying 

(5) may he reduced to the case in which not only (5) holds, but also 

fL@> = f(P)* 
This completes the proof of (‘i j on the aseumpt~ion (8). 

6. In order to prove (S), notice first that 

where the summat’ion indices pJ q of the double sum run through all pairs of 

distinct primes. Hence, ,2, f ( nz ) ‘? cannot exceed 

Since the partial sums of the series S e 
P 

are bounded (>$4)? it follows that 

This clearly implies (8). Thus, the proof of (‘7) is now complete. 

7. For any y = f(n), define y+ = j+(n) by placing 

(9) y+ = y or y+ = 1 according as ) y 1 < 1 or 1 y 1 2 1. 

7 P. Erdiis, lot. cit. I, I, p. 124. 
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Then an f( ~1,) which satisfies (5) cannot have an asymptotic dktribut.ion 

function unless the series 

(10) zf’ RllF, 2 f’(P)’ 

1’ I’ 
are convergent. 

In fact, the conrergence of the second of the series (10) is clear from (6) 
and (9). On the other hand, (7) and (9) shot!? that the first of the series 

(10) is certainly conI-ergent if 2’ 1 f(p) 1/p < ~0, where the summation 8’ 

Ianges over those primes p at which ’ f(p) ] >= 1. Xtence, it is sufficient to 
zssure that X’~(p)“/p < CD. But this is clear from (6). 

8. It will no-~ be easy to prove the following theorem: 

(i). Aa additive function f(nj has an asymptolic distribution function 

if and only if (10) is satisfied. 

That (10) is a suf”ncient condition for the esistence of the asymptotic 

distribution function of f(~), has been Prored by Ed& lot. cit.l, III. On 

the other hand the necessity of (10) is established by 5 1 for those f(n) 
which satisfy (5). Thus, (i) will be proved by showing that the result of 5 7 

holds without the restriction (5) also. 

Suppose, therefore, that f (11) h as an asymptotic distribution function; 

znd that there does not exist a constant rhich satisfies (5) for all primes. 

It may be assumed that there does not exist a number li with the property 

that the sum of the reciprocal dues of those primes p at which j f(p) 1 > R 
is a conrergent series. In fact, if this series is convergent for some sufficiently 

large E, then the truth of the statement (10) may be obtained by a repetition 

of the corresponding considerations, applied lot. cit.7 

9. Consequently, it may be assumed that there exists an infinite sequence 

of primes, say JJ(‘), p’2)3 I . , in such a way that, on the one hand, the sum 

of the reciprocal dues of all these p’j) is a divergent series, while the sum of 

the squares of these reciprocal values is less than & say ; and, on the other 
hand, one has 1 f (p( jJ ) 1 --f co : as j + CC. Kow, the existence of such a 

sequence p(l); 12(‘), . is incompatible dth the existence of aa asymptotic 

ctistribution function for f (~1) . 

In fad, if f(72) has an asymptotic distribution function, then there exists, 
by $1, a sufficiently large X > 0 which has the property that the density of 

the set of those integers n which satisfy- 1 f(~) 1 5 h exists and does not 

exceed 2: say. Thus, it is clear from the choice of the sequence r)(l), p(‘), . . * , 

that the density of the set of those integers n which satisfy the condition 
and are not clirisible by the square of any of the primes 

cannot be less than 4. Hence, on choosing the ralue of h 



fixed, one sees that the sum of the reciprocal values of those integers m which 

satisfy both inequalities 1 f(m) / 5 A, m 5 vz and are not divisible by the 
square of any of the primes p(l), ~(~1,. . . , must exceed 3 logn for every 

sufficiently large 1~. Now, it is readily seen from t’he elementary considerations 

which were used in the proof * of t,he sufficiency of the condition (IO), that 

one can find two integers m, say m, and m3, which satisfy the condition 
/ f(m) j S X and are such that, on the one hand, m2 = mld for a suit.able 

integer d and, on the other hand, p fz) / d for a suitable element p(z) of the 
sequence p(l), pc2), . . . . 

Clearly, this implies a contradiction whenever the prime pcz) satisfies the 

condition f(p’l)) > 2X. And this condition may be satisfied by a suitable 
choice of pcE)& In fact, the value of A has been fixed, while 1 f@(j)) 1 + co, 

as j+ co. 

This completes the proof of (i) . 

IO. Let f(n) b e an arbitrary additive function, which need not have an 
asymptotic distribut.ion function. On choosing any fixed k’z 1, and denoting 

by ~1, * . . , UJ, real variables each of which varies continuously from - co to 
$ co, one readily verifies from the definitions (1) -(a), that limit,s 

X{exp i 2 uif(j) (33) } and .H{exp iUjf(‘) (a)} ; j = 1,. . . , k , 
j=l 

where N{g(n,)} =lim (g(l) f. + g(n)),/%, exist uniformly in every 
fixed (ul, . . . , uut) -sphere u12 + . ’ ’ + ui2 < const., and that 

(11) Mjexp i i ujf(j)(n)} =J$ M{exp iujfcj) (W)}. 
j:l 

This means ? that the k functions f(l) (n), . , fck) (n) are stat&ticaZly 

ilzdependent, and implies, lo therefore, not only that each of the addit,ive func- 
tions (1) and (2) possess an asymptotic distribution function, say I 

and Q(Z), but also that 

(12) L(u; vkk) = A L(u; dj)) for - 00 < u < + CO, 
j=i 

L (u; p) denoting the Fourier-Stieltjes transform 

(13) 
-52 

In fact, if g(n) has the asymptotic distribution function p(z), then 

8P. Erdh, Zoc. cit.*, III, Proof of Lemma 3. 
s P. Hartman, E. R. van Kampen and A. Wintner, Zoc. cit. *, $ 8. 
lo n&L, 8 7. 
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(14) N{exp kg(n)} = L(u; p) ; 

so that (12) follows from (11) by choosing all the Uj equal (= u). And 

(12) means that the asymptotic distribution function OJ;(X) of fk(n) is the 

convolution 

W) ok = a(l) *@(2) * . . . * ,(li) 

of the asymptotic distribution functions u(j) (z) of the terms f(j) (2) of fk(~), 

i. e., of the sum (2) which belongs to the given f(~) in virtue of (1). It is 
understood that the convolution, 0: * 8, of two distribution functions a, p is 

defined as the distribution function 

so that L(u; a * ,8) = L(u; a)L(u; p). 

It is readily verified that the asymptotic distribution function g(k) (.z) 

of the additive function (1) is the step function which has at z = f(p”) the 

jump ~~“(1 -p-l), where p denotes the k-th prime number and m = 0, 1, .* . 
It is understood that the values f(p”) belonging to the same p = p need not 

be distinct for distinct wt. Thus it is clear from (13) that 

(16) L(u;w (k)) = (1 - p-l) +tTa,+ exp iuf (p”) , where p = pi;. 

10 bis. It should be mentioned that the italicized result of 5 10 becomes 

wrong if statistical independence is meant in the sense of Bat and Steinhaus,ll 

instead of the sense defined by Hartman, ran Hampen and Wintner.3 In fact, 

one can readily choose a sequence of numbers f(l) (2), f(l) ( 22), f(l) (2”), . . 

in such a way that for the corresponding function f(l) (n), determined by (l), 
the limit U{ 8, ( 7%) } mentioned at the end of 5 1 does not exist at 2 = 0, say. 

11, Let the additkre function f(n), the positire integer k and an E > 0 

be arbitrarily given. Let XkE denote the set of those positive integers n at 
which the function (2) satisfies the inequality / f (7~) -fflt(n) / > E. Suppose 

that, in the notations introduced in 5 1, one has 37 {8kE(n) } + 0, as k + co. 

Suppose finally that this limit relation holds for every fixed E > 0. Then the 

functions fl(m), f2(n), . . are said to tend to f(n) in relative measure. 

The following theorem will now be prored: 

(ii), An udd.‘t ’ z dz’e fu~lctio?z f(.n) has nn clsyln.ptotic distribution if and 

only if the functiart (2) tends, as k 9 co, to f (?a) in relative mea.sure, in which 

11 &I. I&c and H. Steinhaus, Stmh Muthematicct, ~01. 7 (1937), pp. l-15. 



case. the a5zppfotic disl~~il~~~rl~ion fu7zdim of fk(n) temk, (ts k+ x, to the 

asympfofic cii_ci,l,~hzr~,io,n. fw1clio~~~ vf f(n). 

In fact,, if f~@) tends to j’( 17.) in relative measure, then -f(n) has an 
asymptotic distribution function which is the limit of the asymptotic distxibu- 

tion function of fiC (71). This follows from a general theorem,l’ since every 

!A@) has, bF # 10: an asymptot,ic distribution function. Conrereely, if f(72) 
has a,n a,symptot,ic didribuxion function, then (i)? 5 8, shows that (10) is 

satisfied. Since (10) is known I3 to be sufikient for the conrergence of fk(,)?,) 

to f (11) in relative mexsure, the prcof of (ii) is complete. 

12. On comparing the definition (16) of ~‘~1 (z) with n general cri- 
terion I4 for the convergence of an arbitrary infinite convolution: one readily 

sees that (10) is precisely the condition for t,he convergence of the infinite 

convolution 
(17) LT = ,il) *< ,!?I * . . 

But the X:-k approximating convolution of (I?) is the asgmptotic distribution 

function (15) of fk(?b). Hence, (i) and (ii) imply t,hhe following theorem : 

(iii). All. additive fmction~ f(n) ?ras &a usy,mptotic disfPibation if rind 

only ,if the i?bfinite CO)Z,~‘D~:~L~.~‘O.~Z (I?> is comwyent. Pwthmmore, if f(n) has 

nt all an rrsyi~.~~tofic d%stl-ibution fuact~ion, the latter- is n.ecessn7ily (17) . 

13. As pointed out at t,hc end of g 10, the dist~ribut~ion function CT(*) (z) 

is a step fundion. Hence, on combining (iii) with a general reeult I5 on 

infinite convolutions of step functions, one obtains t,he following theorem: 

(iIT>. ii d t. i$ f-’ f . . .f is 7-i u 1011 uric ivrr which is the usy~mptoiic distribediorz func- 

tion of m aclditiso function (( 77,) either is a step fum%ion. 07’ it is eoe~rplwre 

co&n.uozl.s, rind ila the laiier case it is either- purely singulru 01’ a.bsolutely 

con.tinuous. 

It is a rather intricat~e problem, at least in general, to distinguish bet.ween 

the cases of sbsolut,el>T continuous and purely singular behavior.lG On the 

other hand, the case of mere cont,inuity is completely charact,erizecl by t,he 
following theorem : I7 

I2 B. Jessen a.nd A. Wintrier, Zoc. cit. ?, Theorem 24. 
l3P. Erdk, Zoc. cil-. I, III, Lemma. 1. 
l4 B. Jessen and A. Wintrier, Eoc. cit. %, Theorem 34. 
IS B. Jessen and A. Wintrier, LOG cit. %, Theorem 35. 
IF There are two extreme cases in which such a distinction is not too difficult ; cf. 

P. Erdijs: Ammica~~. Ja~wnnl of ~inthemntics, vol. 61 (1939): pp. 722-725. 
I’: If use is made of (i)) the criterion (1s j also follows as a consequence of the 

results obtained by Erdk, 1.0~. cit. *, III, by direct considerations. 
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(v). d distributian fwction which is the asymptotic di.dributiO~a func~ 

tion of nn dditive function f(n) hns 120 discontinuities if and only if 

(18) 2 L is dkiergent. 
f(D)#fo P 

In fact, a general theorem of I?. L&y l8 stat.es t’hat a convergent infinite 

convolution p(l) * p@) * . . of distribution functions p(“) is continuous at 
every 5 if and only if the inkite product Il& = 0, where & denotes the 

largest jump (0 ( dz 5 1) of p(k)(z), On the other ha.nd, (16) shows that 

the largest jump of v(k) (~7) is at most 1 - P-I + p-z if f(p) f 0, and at least 

I - pA2 if f(p) - 0, where p = pk. Hence, (v) is implied by (iii). 

14. By the spectrum of a distribution function p = p(z), - t13 < 2 

< + W, is meant the set of those 5 in the vicinity of which p is not constant, 

i. e., of those x for which one has p (x - E) < p (x + 6) whenever E > 0. 

(vi). If the additive function f(n) h as an a.syrtzptotic dist%uti07~ func- 

tio.n, the spectrum of the latter is ideatical with the closuw set of the vulues 
a.ttuined by the function f(n) fo-( ~a = 1, 2, . ’ . 

In fact: (16) shows that (vi) is certainlv true in the particular case 
f (11) = f ck) (n). Hence: on combining (iii) with a general tlleoreql” one 

sees from (3) -(4), where f@) (1) = 0, that (vi) is true for an arbitrary f(n). 

15. Further results may be obtained by combining (iii) with the theory 

of divergent infinite convo1utions.*0 

THE ~NSTITCTE OF ADVANCED STTDY, 
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I8 P. L&y, St,u.dia Yatlwmaticn, vol, 3 (1931)) pp. 119-155, Th6orkme XIII. Another 

proof of L&y’s theorem has recently been communicated to one of us by Professor B. 
Jessen, 

For a unified treatment of I&y’s theorem and of all of the convolution theorems 
used above, cf. a paper by E. R. van Kampen, which will appear in the Americalz 
Journal of Xath.ematics. 

I* B. Jessen and A. Wintrier, Eoc. cit. =, Theorem 3. 
z” E. R. van Kampen and A. Wintrier, Zoc. cit. I, Theorems 4-9, and the investiga- 

tions of P. L&y, referred to there. 
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