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Let’ F (x, y) be a binary form of degree ?I> 3 with integer coefficients 

and non-vanishing discriminant, and let A(u) be the number of different 

positive int,egers k < U, for which 1 S(x, y) / = k has at least one solution 

in integers x, y. 11-e prove t,hat 

(4 lim inf A(U)U;-z/J7 > 0. 
41-+x 

The proof is simple, but not elementary, since it depends on the p-adic 

generalization of the Thue-Siegel theorem. The result remains true when 

x and y are restricted by condit,ions 

5 > 0, ax < y ,< px (a, /3 constants). 

* Received 15 December, 1937; rea,d 16 December, 1937, 
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Thus, for instance, when F(n, y) is not negat,ire definite, and A(u) is now 
the number of positive integers k ,< U: for ~-hi& F(s, y) = k has at least 
one solution, then again (a) is true. In t’he special case F(x, y) = xn+y*, 
VA 2 3 and odd, one of us (Erdiis) ha.d alrea’dy found an element,ary proof 
for (a) some weeks ago, but this proof could not be generalized. 

1. The following notat,ion will be used : 

.F(x, ?I) = i ahx’l-n yn (a,u, # 0) is a binary form of degree 1~ > 3 with 
h=O 

integer coefficients and discriminant d fi 0. 

2, y are two integers. for which F(z, y) # 0. 

IT YI =max (IxJ, l~l). 
N is a sufficiently large posit,ive integer. 

A is an integer not zero with sufficiently large modulus /A j. 

9 is a number satisfying 0 < 9 f 1, to be assigned later. 

cot Cl, .*+ are positive numbers, which depend only on the form F. 

y=max(la,j, Idl. VL). 

p is a prime number satisfying y <p < Ns. 

P is a prime number satisfying either P <y or P > W. 

pa I I A denotes that A is divisible by p”, but not by pa+l. 

g(A) is the arithmetical function defined by g(A) = IT pa. 
y<paV~ 

13”llA 
P<ivS 

WO= ,5, I-& g( F(X, y,) < ~83,=(2~~+1)~. 

PC+, v) +o 

Proof. By definition, p > 4~ and p is prime to a, and d. Hence, for 
given a and y, there are at most n incongruent values of x (mod pa), for 
which F(x, y) = 0 (mod pa). Therefore, for given p and a with 

y<p <pa <x3, 
the conditions 

15, YI <:N, F(x, y) # 0, E”(x, y)--0 (mod pa) 

have at moat 
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solutions x, y. It follows t,hat, the exponent b! with pbjj G(N), satisfies the 

inequality 
B ( z 2n(2N+1)2= %2(2N+l)” <4n(2N+1)2 

\ 
Pa p-l L p u a=1 

Hence: for sufficientjly large N: 

i G(iv) <exp i c 4n(zN+ 1)2 

y<p<XJ P 
log p 1. ,< NZJ &?(zN+l)*, 

since 2 log 
P<U P 

< 2 logu 

for sufficiently la,rge ZL. 

LEMMA 2. If p is the wumbev of puirs 2: y with 

/F(x: y/)1 <x4, lx, yJ <N, 

theit b< < $N2 for su$iciekQy lcwge A’. 

Pmof. For a) given m with (~2 j ,(A-+ and a given y 1%~ith /g 1 <N, the 

equation F(cr. y) = nz has at most n integer solutions x. ant1 therefore 

p < n(q/‘N+- 1)(2K- 1) ,< +v. 

LEXMA 3. For sz@ciently large N, there are at least $X2pairs of integers 

x, ywith lx, yj <Na.nd (x, y)= 1. 

Proof. Obviously, the number of these pairs is at least 4X, where .Aiz 

denotes the number of pairs with 1 <x GA!: 1 <y <N, (2, y) = 1, so that 

LEMMA 4. For sujiciently large N, there nre at least +N” pairs of 
integers 5, y with 

jx,y[<NN, F(x,y)#o, (x,y)=l, g(P(z,y))~~F(~,y)/~“~~“. 

Proof. By Lemmas 2 and 3, there are at least $N2--$AT2 = N2 pa.irs 

x, y wit,h 
/5: y(&v, jF(x,y)pv, (x,$/)=1. 

Hence, if Lemma 4 were false, there would be more than S”- $LV = QM” 

pairs r, y wit,h 

g( F(s, y)) > lE(.z, y) /lfiOJ” > LVfiOJ~~, 

and therefore G(N) > N 803. ?, &N> > ~pY?1(3SCl)", 

in contradict,ion to Lemma 1. 



137 P. ERI%S and K. MAHLER 

LEMMA 5. For all x and y, 

IF@, y)/ <c&, yj”. 

Proof. Obvious with c1 = j a, j -/- . . . + j a,,, !. 

LEMMA 6. For su$iciently large N, there at’e at least J$Nz pairs of 
integers x, y with 

(1) lx, y( <AN, E”(x, Y) # 0, Ix, Y) = 1, 

such that ( F(q y) I= k, k,, achere k, and k2 are positive integers such thuf k, is 

divisz’ble by at most c2 diflerent primes2 and k, ,( JF(x, y) j 5. 

Proof. We apply Lemma 4 with 19 = l/( 1120n) and 

I;,=g(F(z, y)), x:,= I”(;; y)i. 

k, and k, are positive integers, since gl( F(x, y)) is a positive integer which 

divides F (5. y). By Lemma 4, for at least $A’” pairs x, y saDisfying (I), 

IL, < [ F(z. y) /16D9n = / F(x, y) 17. 

The other factor k, is divisible only by prime numbers of the form P with 

either P < y or P > IW’“. But there are at most y primes of the first form, 

and, since by Lemma 5 

there are at most 1200ti2 different primes of the second form, which 

ca,n divide F(x, y), for sufficiently large N. 

3. To conclude the proof we use the following generalizatSion of the 
Thue-Siegel theorem* : 

LIZMMA 7. Suppose thnt x and y are integers with 

Fc-6 y) f 0, (x, y) = 1, 

that P,, P,, . . .) Pf are t di#eyent pl-ime numbers, and that 

Q (s, y) ::- PY Pi, * I. PF 

* See I<. Mahlcr, Xath. dnnule~, 10X (1033), 51, Satz 6, from which Lemma i is a 
trivial conseyuencr, if F(2, yj is irreducihlo. But Satz 6 remains t.ruc when .F(r, y), though 
reducible, has a non-x-anishing disariminant, if only the representations of I; = 0 are excluded; 
a proof for this generalized theorem and so for t,he general case of Lemma 7 will be published 
in the near futura. 
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is the greatest product of pouws of these pimes which divides F(x, y). Then 

the inequality 

I F(x, Y) I 
&(x 

I 
y) < lx, Yjh-~E 

has at most ci+l solutions in diflerent pairs x, y. 

Suppose now Ohat k is a positive integer, for which 1 F(x: y) / = k ha,s at 

least one solut,ion. Then, by Lemma 5, 

so that /x, y / cannot, be too small. The integer k = 12, k, is a product of two 

positive int,egers I+ and k,! of which k, ha.s no other prime factors than 

P 1: .-‘> Pl! while k, is prime to P,, . ..j P, ; hence, in parkular, 

LEMMA 8. If the positive integer k is lawyer than c4, and if it can be written 
in the form k = k, k2. where k, is divisible by only t difierent prime numbers, 

and zhere k, < x1+: then the equation 1 E(x, y) 1 = k has not moye than c13f1 

diflwent solutions x, yin relatil;ely prime integers x and y. 

THEOREM 1. For every sugiciently kwye positive u, there ape at least c,, u2/?& 

different positive integers k <u. for which the equation 1 E(x: y) ( = k has at 

lemt one aolutio?z in relatively pime integers 5 a,nd y. 

Proof. Suppose, in Lemma 6, that 

IP(x, y)] <u for 15, yJ <x. 
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Then it follows that there are at least 

&-1,‘n U2:n 
21 

different pairs of relatively prime integers x, y with 1 x2 y / < AT, for which 

jF(x, y)j=k#O 

is a product’ of two positive integers X: = k,k,, such that k, is divisible 

by at most c2 different primes, while k, <k+. Hence; by Lemma 8, 
either k < c4, or the number of different relatively prime solutions of 
j$‘(z, y) I= k is not larger than cp+l. Therefore, for sufficiently large u, 

there must be at least 

+ C3(c2+l) 
. $1 

1 -l/71 U2jn 

different positive integers k <u, for which 1 P(x, y) 1 = k has at least one 
solution in integers x, y with (z:, y) = 1. 

4. By a theorem of Siegel*, the inequality 

has only O(~C~;?~) solutions in integers x, y. Hence the number of integers 
k, with 1 < k < U, which can be represented by 1 F(z, y) /, say the number 

A(u), must also be O(U~‘“)~ and so Theorem 1 gives the exa,ct order of this 

function and shows tha’t lim inf .A (?L)ju2i71 > 0, while lim sup A (u)/zA~/~< co. 

University of Manchester. 

* As Prof. Siegel’s proof has not been published, see K. Mahler, Actu Math., 6% (193d), 
92 ff. 


