ON THE NUMBER OF INTEGERS WHICH CAN BE
REPRESENTED BY A BINARY FORM

P. Erpos and K. MAHLER*.

[Extracted from the Journal of the London Mathematical Society, Vol. 13, 1938.]

Let F (x. y) be a binary form of degree n == 3 with integer coefficients
and non-vanishing diseriminant, and let A (%) be the number of different
positive integers L = w, for which | F(x, y)| == k has at least one solution
in integers x, y. We prove that
(@) lim inf A (u)w %" > 0,

U
The proof is simple. but not elementary. since it depends on the p-adic
generalization of the Thue-Siegel theorem. The result remains true when
x and y are restricted by conditions
=0, ax<y<Pr (a B constants).

* Received 15 December, 1937; read 16 December, 1937,
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Thus, for instance, when F(z, ¥) is not negative definite, and A4 (%) is now
the number of positive integers < #, for which F(x, y) =k has at least
one solution, then again (a) is true. In the special case F(x, y) = a"--y*,
n == 3 and odd, one of us (Erdos) had already found an elementary proof
for (a) some weeks ago, but this proof could not be generalized.

1. The following notation will be used :
Flg, 9)= 5 a2y (aga, 7 0)is a binary form of degree n = 3 with
h=0

integer coefficients and discriminant d 0.
@, y are two integers, for which F(xz, ¥) 5 0.
J@, y| =max (||, |y|).
N is a sufficiently large positive integer.
4 is an integer not zero with sufficiently large modulus |4 |.
# is a number satisfying 0 <<# <{1, to be assigned later.
Cq, €y, ... are positive numbers, which depend only on the form F.
y = masx (|ap|, ], ).
p is a prime number satisfying y < p << N?,
P is a prime number satisfying either P <y or P> N*.
|| A denotes that A is divisible by p“, but not by p+1,
g(A) is the arithmetical function defined by g(d)= 1 p=

y<psN?
|4
pr< N3

2. LemMa 1. For sufficiently large N
CW)y= 1 g(F,y)) < Nemev,

l®, yI<N
Fiz,y)#0

Proof. By definition, p > n and p is prime to @, and d. Hence, for
given @ and y, there are at most » incongruent values of z (mod p*), for
which F(z, y)=0 (mod p?). Therefore, for given p and @ with

y<p<p*<N?,
the conditions
2, y| <N, F(,y)#0, F(z,y)=0 (mod p*)
have at most

_ (N1

n(2N41) {[%}]_1; B
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solutions z, y. It follows that the exponent b, with p?|| G(N), satisfies the
inequality
2n(2N+1)*  2n(2N-L1)? _ 4n(2N 1)

=%

1 * p—1 P

Hence, for sufficiently large N,

b< 3

i

A

{ 5 m2N41) logp" < N2 402N+

G(N)<exp: X P
ty-:ps:_ﬁ‘«" P |
since x logp = 2logu
p=u

for sufficiently large u.
Lemma 2. If p is the nwmber of pairs z, y with
|[F(z, y)| <NY, |2, y| <N,
then < N2 for sufficiently large N.

Proof. Tor a given m with |m| < N and a given y with 'y <N, the

equation F(x, ) = m has at most n integer solutions 2, and therefore
< n(2/ NN £1) <IN

Leyma 3. For sufficiently large N, there are at least N2 pairs of integers
@, ywith [z, y| <N and (x, y) = 1.

Proof. Obviously, the number of these pairs is at least 4, where M
denotes the number of pairs with 1 <<a << N, 1 <<y <N, (2, y) =1, so that

V 1 its

N i o i 2
> N&_% Ne2— — ) =N2?[2—— =
M=N i =N (2 ?El ;&2) N (2 6) > 3

Lemma 4. For sufficiently large N, there are at least [N® pairs of
integers x, y with
o, y| <N, Py #0, @y=1 g(F@y)<|F@ y)peon

Proof. By Lemmas 2 and 3, there are at least $N?—5N%= N? pairs

x, y with
|z, y| <N, |F(z,y)| =N, (2, y)=1.

Hence, if Lemma 4 were false, there would be more than N2—[N%= IN?
pairs #, y with

g(F(a‘, y]) > | F(x, y)[1o03" = N5,
and therefore G(N) > Neos.ni¥? o, Newmai+1)?,

in contradiction to Lemma 1.
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LemMa 5. For all  and y.
|z, 9)| <eule, yl"
Proof. Obvious with ¢, =la,/+...+]a,!.

LeMMa 6. For sufficiently large N, there are at least IN?* pairs of
wntegers x, y with

(1) le,y| <N, Fl,y)#0, (@y)=1,
such that | F(x, y)| = ki ky, where ky and k, are positive integers such that ky is
divisible by at most c, different primes, and ky < |F(x, y)|*.
Proof. We apply Lemma 4 with &= 1/(1120n) and

e ada | F(x, y)]

’{2—5'(1'(37: ?!)): ky = E,
ky and £, are positive integers, since gi: Fx, y)) is a positive integer which
divides F(x, y). By Lemma 4, for at least 1N? pairs x, ¥ satisfying (1),

ky < | Fz, y) 1809 = | F(z, y)}*.

The other factor L, is divisible only by prime numbers of the form P with
either P <<y or P > N*. But there are at most y primes of the first form,
and, since by Lemma 5

\F(x, )| <oy N7,

there are at most 1200%* different primes of the second form, which
can divide #(x, y), for sufficiently large N.

3. To conclude the proof we use the following generalization of the
Thue-Siegel theorem*:

Lemya 7. Suppose that © and y are integers with
F,y)#0, @y =1,
that Py, P,, ..., P are t different prime numbers, and that
Gz, 9) = Pl Phs.., Ph

* See K. Mahler, Math. Annalen, 108 (1933), 531, Satz 6, from which Lemma 7 is a
trivial consequence. it F'(x. ) is irreducible.  But Satz 6 remains true when F(z, i), though
redueible, has a von-vanishing digeriminant, if only the representations of & = 0 are excluded;
a proof for this generalized theorem and so for the general case of Lemma 7 will be published
in the near future.
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18 the greatest product of powers of these primes which divides F(x, y). Then
the inequality
[F(x3 y” o n—1-2
Qg <Y
has at most ¢4t solutions in different pairs =z, y.
Suppose now that £ is a positive integer, for which | F(z, y)| =k has at
least one solution. Then, by Lemma 5,
! . . k 1/
('.1|4;, y.u ;3,’.’ t.e, X, yl = (E;) 8
so that [w, y | cannot be too small. The integer & = £, k, is a product of two
positive integers &, and &y, of which &, has no other prime factors than
Py, ..., P, while L, is prime to P, ..., P,; hence, in particular,

E=0(x 1y, & _ | E= )]

P Q@y)
Suppose that key < I,
so that K:g g“ cl}sx, y“f?ﬁ_

Since n = 3. we have
In—l—gs Zdn—gn—Jo=In— i > lnt@—3-J5) = lnt s
Thus, when
) . A‘ Lin
kZzofitl=yy; 4o |2,9|2 (—) 2ok

we gef
x, yliﬂ—l‘ﬁ]i.

e y[ <1, and by <o, gy, ylint g
Hence Lemma 7 leads to
Lemma 8. If the positive integer k is lavger thun vy, wnd if it can be written
in the form k =k, k,, where k, is divisible by only t different prime numbers,
and where ky <17, then the equation | F(x, y)| =k has not more than cit?
different solutions x, y in relatively prime integers x and y.
TreorEM 1. For every sufficiently large positive u, there are at least cqu®™
different positive integers k < u. for which the equation | F(x, y)|=k has at
least one solution in relatively prime integers x and y.

Proof. Suppose, in Lemma 6, that

x 1'n
N= (ci) » te |F(x,y)|<u for |z, y|<N.
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Then it follows that there are at least

} cl— 1/n .u_‘z_'n
different pairs of relatively prime integers x, y with |z, y| << N, for which
[Fa, y) =k#£0

is a product of two positive integers k =k, k,, such that %, is divisible
by at most ¢, different primes, while k, <<i*. Hence. by Lemma 8,
either & <e,, or the number of different relatively prime solutions of
| F(x, y)| = k is not larger than ¢j™. Therefore, for sufficiently large u,
there must be at least

‘1_' 05(02+ 1 %01— 1;’nu2,'n

different positive integers k <<u, for which | F(z, y)| = k has at least one
solution in integers x, y with (x, y)=1.

4. By a theorem of Siegel*, the inequality
0<|F(x, y)|<u

has only O(»*") solutions in integers x, y. Hence the number of integers
k, with 1 <<k < u, which can be represented by | F'(x, )|, say the number
A (), must also be O(u*"), and so Theorem 1 gives the exact order of this
function and shows that liminf 4 (u)/u*" = 0, while limsup 4 (u)/u*" < co.

University of Manchester.

* As Prof. Siegel’s proof has not been published, see K. Mahler, Acta Math., 62 (1934),
92 ff.
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