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1. Introduction.

Let
x{l)
xi?], xéz}
A = . S
x:{n}, xéuJ, e x;n)

be a triangular matrix, or shortly matrix, where for every line

-1 22" < 2P < voga™ g 1
We define the n* Lagrange interpolation parabola belonging to the function
f(z) as the polynomial L.(f) of degree (n — 1) at most taking at z{" ™

1 3 ") dm

the values f(z{™), - - - f(z{"). The explicit form of this polynomial is

L) = @) = 3 ),

p=]1

where

Zy(i") = w(.’!:)

o'(z,)(x — x,)’

and

w(@) = w0, @) = [] (¢ — &) =[] (z — 2.).
pu=] pe=]
The polynomials 1,(x), the ‘“‘fundamental functions” are independent of
f(z). We give explicit indication of the dependence of 1,(z) upon n only when
we want to emphasize this dependence or when a misunderstanding may arise.

1 We reported part of these results to the Math. and Phys. Assoc. Budapest, 12. XTI,
1935.
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704 P. ERDOS AND P. TURAN

We evidently have
(1a) L) = 3 L(z) = 1,
v=l

or more generally, if ¢(z) is a polynomial of degree k&

(1b) Lua(y) = ¢ n=12-:-.
In the theory of the Lagrange-interpolation we shall consider the two se-

quences L., (f):—s, and i L.(f) dxforn— . The behavior of the first sequence

is determined” by

(2a) Bin, 70 = 3 [ (@),

f_ i 1(z) dz

These expressions B;(n, z;) and Bs(n) are evidently independent of the function
f(z); they depend only upon the matrix A of the fundamental points and (as
in (2a)) upon the value of z,; they are the analogues of the Lebesgue-con-
stants in the theory of Fourier-series.

The examination of the second problem is particularly easy when the so
called “Cotes numbers’ are all greater than or equal to 0," i.e.

3) M= M"Y 20, EF=12---n n=12....

that of the second one® by

(2b) By =X " =3

p=1 y=1

For in this case, by (1a) we have

T

Z{MI=§M=2,

k=1

i.e. we immediately obtain by Pélya (l.c.) that if f(z) is R.-integrable,” then for
the Lagrange parabolas taken on such an A

lim 1;",,,,(_)")431?,2: = _[:f(x) dz.

n=—s f—1
Thus (3) implies an important interpolation property of the matrix A. Pélya
proved that the necessary and sufficient condition for quadrature convergence
for continuous functions is

4) Bi(n) < ¢

. Hahn: Uber das Inierpolationsproblem, Math. Zeitschrift 1918. The notations
“bounded,’”’ ‘“R-integrable’’ ‘‘L-integrable’ ‘‘continuous’’ refer always, to the interval

3 (. Pélya, Uber die Konvergenz von Quadraturverfahren, Math. Zeitschrift 1933. Bd. 87.
PP 264-286.

4 L. Fejér: Mechanische Quadraiuren mil positiven Cotes-Zahlen, Math. Zeitschrift
1933. Bd. 37. p. 287-309. See (2b).
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where ¢, (and later ¢, - - -) are positive constants independent of n. Also (4)
depends only upon A and implies an important interpolation property.

To obtain a new and important interpolation property of A in the theory of
the Lagrange interpolation we are forced according to Fejér’ to consider the
Hermite-interpolation. The nt step parabola of the bounded and integrable
function f(z) is defined as the polynomial H.(f) of degree (2n — 1) at most

taking at z{", ..., 2{™ the values f(z{™), - - - , f(z{”) with dv——-—Hd'if) w = 0
(#=1,2,---n) The explicit form of this polynomial is givenby
Go) () = B s [1- 08 - 2) 16 = E e,
yu v =1

where
(5b) w@) = Il e - ).
Then the above mentioned property is

flx) =1 — ‘-ﬁ(fv"_k) r — = ¢,
(5¢) x(x) o (72) (r—m) Z e

_1§$‘=:+1, k=1,2,---,?&, n=1)2""

The matrices with the property (5¢) are called by Fejér “strongly normal”
matrices and he deduces for their Lagrange parabolas convergence criteria of

great generality. The identity 2 hu(z) = 1 plays an important réle here.
=1

By this identity and (5¢) we have for strongly normal matrices E Lz) = El
=1 2

1.e. a fortiori
| l(z) | = &

(6)
—1=z= 41, k=1’2,...n, n=1,2,....

Thus the strongly normal matrices satisfy (6), but the converse is not true.
(6) implies an important interpolation property, too.

The importance of the Hermite interpolation is also shown by the following
fact. As Bernstein® proved, there exists for every matrix A a continuous f(z)
and an abscissa z, such, that lim sup | Lu(f) |2z, = 4+ . On the other hand

7 =00

Fejér’ proved, that for certain special matrices the Hermite parabolas H,(f) of

5 L. Fejér, On the Characterization of some remarkable systems, elc. Amer. Math.
Monthly. 1934.

5 Bernstein, Sur la limitation des valeurs d'un polynom etec. Bull. de I’ Acad. de Sciences
de I'URSS, 1931.

7 Fejér, Die Abschdtzung eines Polynoms ete. Math, Zeitsch. 1930, Bd. 32, pp. 426-457.
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any continuous f(z) econverge uniformly to f(z) in [—1, +1]; e.g. the “matrix 7",
the n** row of which consists of the n roots of 7,(z), the Tschebyscheff poly-
nomial (7.(cos 8) = cos nf), displays this property. The question now arises,
which matrices possess this property? Or if uniformity of convergence is not
required: what is the necessary and sufficient condition, that for any continuous
f(z) and at any fixed point z,

) lim Ho(f)omzy = f(20)?

n—+00

For our purpose it will be sufficient to know, that a necessary condition for (7) is

n

(8) 2@ <6, —l=z

k=1

A

1, n=1,2---.

This condition follows immediately from the theorem of Hahn (l.c.). The sum
in (8) evidently depends only upon A4; thus it expresses an interesting inter-
polation property.

In (3), (4), (5¢), (6) and (8) we enumerated some interpolation properties.
As far as we know, the whole literature on interpolation®—with the exception
of two papers—is deducing convergence—and divergence—properties from
given suppositions for the matrices. Fejér® was the first to invert the problem,
deducing distribution-properties from given interpolation properties. He
proved e.g. that from (3) or from (5¢) it follows, that for n — o« the difference
of the consecutive elements of the n'* row of the matrix tends to 0. The im-
portance of the new idea is shown by the fact, that the required interpolation
properties are sometimes quite easily verified. An interesting example is given
by the “matrix P, the n'» row of which is given by the n roots of the nt* Legendre
polynomial P,(z). In consequence of the orthogonality we evidently have

1 1
fl,(x)dx=f£,(:c)2d:c>0, v=1,2 ...,m, n=12 ...
—1 -1

which means that the matrix P satisfies (3).

In this paper we are concerned with analogous investigations; we deduce the
distribution of the fundamental-abscissas from given interpolation properties.
In §2 we show the effect of the condition (6).

Tarorem I. Lei

9 W =cost™”, O0=6"=6" <oV < ... < =0 =

% As a matter of fact, we do not mean here complex interpolation.
% See footnote 4 and Fejér: Lagrangesche Interpolation ete., Math. Ann, (1932).
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Then, if matriz A satisfies (6), we have

(10a) 2sof-ev 2, v=1,2 - (n—1)
The upper bound s valid for v = 0 and v = n, the lower one is not.”

The theorem generalizes Fejér's second result in two respects; the assumption
is weaker and the result stronger. The theorem means, that the distribution
of the roots on the circle with the radius 1 is quasi-uniform i.e.

2<lac@PQH(<2,  y=1,2...(@-1
(10b) and
n n Cs ' n C
lare Qi Q5" | < = jare QORI S Es

Fie. 1

As stated above, from theorem I it follows a fortiori, that the distribution of the
fundamental points Fig. 1. of a strongly normal matrix is quasi-uniform."

There is an application of theorem I for the roots of some classical polynomials.
The Jacobi-polynomials J.(z, @, 8) corresponding to the parameters a, 8 (a = 0,
B =0, e and 8 fixed, n = 1, 2, .- .) may be characterised as the polynomial
solutions of the differential equation

1) (1~ e 4 2l =) @+ 9122 4 aln + et 0) = 110 = 0,

v E.g. the II-matrix, the nt row of which is given by the n roots of IT,(z) =[ P,_;{t)dt
{n

l (n}

-1
(P.(t) the Legendre-polynomial), satisfies (6) and 0"’ = 8™ =0, 6 = /%, = =. We
remark that the lower bound in (10a) is implicitly contained in Fejér’'s paper: Bestimmung
etc. Annali della R. Scuole Norm. Sup. Pisa, 1932.

n

11 It is not uninteresting to note, that the weaker supposition - Z () | = ¢ 18 not
o=

sufficient to assure a quasi-uniform distribution.
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We reproduce the proof of Fejér, that the matrices given by the roots of J.(z,
a, B) are strongly normal, if 0 < «, 8 < 4. Replacing z in (11) by a root z{”

of J.(z, a, B) = 0, we obtain

_wn@) _ Sk, 0, 8) _ 2(a —B) — 2(a + Bz

wnlay) _J;(zk, aB) 1 —zi

further from (5¢)

(12a) () =1—2a+8)+ 2 >1-2
1 + Tr
and similarly
43
(12b) Bk(“1)=1“2(a+ﬂ)+l :c Z1— 2a
— I

and (5c) immediately follows from (12a) and (12b).

Now applying theorem I we see, that the roots of J.(z, e, ) = 0 are quasi-
uniformly distributed on the unit-circle in the sense of (10 b),if 0 < a, 8 < 1.”
For « = B we obtain the so called ultraspherical polynomials. If & = g = 0,
we have the polynomial II,(x) (see footnote’). Hence by Rolle’s theorem we
obtain, that the roots of the Legendre-polynomial P,(z) are quasi-uniformly
distributed. Further as J.(z, «, 8) differs form J :.+1(x, a — %, B — %) only by
a constant factor, we conclude by repeatedly employing Rolle’s theorem, that
the distribution of the roots of the ultraspherical polynomials is for any « = 0
quasi-uniform.

By this method we can obtain general results concerning the distribution of
the roots of certain polynomials satisfying suitable differential equations of the
second order.

In §3 we infer the structure of the matrix from properties of the Cotes-
numbers. Theorem II states that if the Coles-numbers are non negative, then

(13) aE:i—s‘,“’s:_:, y=0,1,---m n=12 ...

Theorem III states that if there exists an inlegrable s(x) lying between two
positive bounds and such that

1
(14) f L(x)s(x) dz = 0, k=1,---mn, n=1,2 ...,
=

12 In addition to (11) and theorem 1 we must know here that each of the roots lies in
[—1, 1]; but this is a well known elementary consequence of the orthogonality of the Jacobi
polynomials with the weight funetion (1 — z)2e-1(1 4+ z)28-1,
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then (13) holds. It will be sufficient to prove theorem III since it is more general
than theorem II.*

Let us give an application of theorem III. Let p(x) be an R-integrable
function, lying between two positive bounds. Consider the orthogonal poly-
nomials with respect to p(z). Asitis known, the n polynomial hasin [—1, 1]
n different roots. Since

/_i L(x)p(x) dz = f_i L(z)’p(z) dz > 0,

the hypothesis of theorem III are satisfied and we obtain the
CoroLLARY. Let p(x) be the weight function defined above; then denoting by
cos 67 (v = 1, 2, - - - n) the roots of the nth orthogonal polynomials with respect to
p(x), we have
o3 — 6™ < es/n, v=0,1,...n
Combining theorem III with lemma III of §3 and replacing the 5 of this lemma
by a 8i”(4/n < 6'” < co/n) we see that, if (14) holds for a matrix, then

1
Y == f Li(x)s(z) dz < —"—:.
—1 T
Since

é f_: Li(z)s(z) dr = 2 min s(z),

1z| =1

it is immediately clear, that for n > ¢y the uf™ cannot all be equal. For

s(z) = 1 Bernstein' proved this for any » > 9. It would be easy to estimate
cio = cwls) for general s(z), but this we omit for the present. It is essential
that s(z) should be bounded; for if p(x) = (1 — 2°)7, then u{® = x/n, k =
1,2, ... n

Let us examine the effect of the interpolation property (4), or more simply
that of the weaker hypotheses

=< eun™, k=12 :..n

(15) ] = | j: i sl

13 Tt 13 easy to see that from the fact that the Cotes-numbers are non-negative we cannot
obtain a lower estimate for the consecutive #'s. For consider the matrix such that its
(2» + 1)* row is given by the roots of the (2v 4 1)* Legendre-polynomial, Py, (z)(v = 0,
1, ---) and its 2vtt row by the roots of P,(z) P,[(1 4 } &)z 4 }&.], wheree, > 0 and so small
that (1 — 3¢,)/(1 + 3 ¢) is greater than the greatest root of P,(z). It iseasy to prove that
the Cotes-numbers belonging to the matrix are all non-negative, but the difference of
certain pairs of consecutive roots of the 2u* row are less than ¢, (and the difference of the
¢'s belonging to this pair < 2¢,).

14 8 Bernstein, Comptes Rendus 1936, 1305-6.
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Theorem IV asserts that

czlog (n + 1) °

(16) 68 — 6™ <
n

v=0+.--n n=12....

¢;3 depends only upon ¢;; and ¢; . This estimate is the best possible, (16) cannot
be improved even, if (4) holds. Take e.g. the matrix 7', but multiply the elements

2
ofits nthrowby 1 — a lgg(—:z—-l-l) . Then the elements of the n*» row will be

2
[l—abg(:_—:i——l)]oosm_lfr, I=1,2+evmy

2n
where a < 3. It can be shown by simple computation that (4) holds and

Iﬂén]—ﬂin}|>cﬂh}g(ﬂ+1)’ n=1’2,.

where ¢y, depends only upon a. 'We omit the details.
A Cororrary oF TaeoEM IV. Consider a sequence of polynomials orthogonal
with respect to the weight-function p(x), where we only suppose that p(x) = 0 and
1

1
f . p(z) dz and [ ] [p(x)] " dz (in Riemann or Lebesgue-sense) exist. Im this case,

as we proved in 1., (4) 1s satisfied, hence for the roots of the n* polynomial (16) holds.

General results about the distribution of the roots of the orthogonal-poly-
nomials—as far as we know—are due to Szegt® and Bernstein. They give
asymptotic formulae for the orthogonal-polynomials but, as a matter of fact,
they are compelled to make strong restrictions with regard to the weight-
function. For these weight functions they determine asymptotically the roots,
whereas our corollaries deduced from theorem IIT and IV give weaker, but more
general results.”

As we saw in footnote,” it is impossible to give an estimate from below in
theorem IV, but for essentially positive and R-integrable weights we have™

n n, C
ﬁﬂ—é’>§. v=1,2 -+ (n—1)

1 From 2 and (4) it follows, that here too 8%, — 61" can be arbitrarily small.

18 G. Szegd: Uber den asymptotischen Ausdruck von Polynomen ete. Math. Ann. 1922,
Bd. 86, pp. 114-139.

¥ Since, then, we have proved by another method, that if p(z) = m > 01is L or R-in-
tegrable, then it is possible to cover the points of infinity of p(z) by intervals of total
length lesg than e so that on the remaining set the roots of the polynomials orthogonal with
respect to p(z) are quasi-uniformly distributed in the sense of (10b). We intend to publish
in another paper this result together with others concerning the uniformly dense distribu-
tion of the fundamental points.

18 G, Grinwald and P. Turdn: {ber Interpolation. This paper will appear in Annali di
Pisa. In[— 1+, 1 — ¢ we can replace the exponent 2 by §.
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We do not give the proof of this result here.

We have already seen that the property given by (3) does not secure the
quasi-uniform distribution of the roots; but we may assert a property connected
with the integral of the fundamental functions by which it is involved. The
property in question is

Ik(—"«')z
an 14/ (1 — 29
The proof of this statement is so simple, that we give it immediately. From (17)
it follows, that the fundamental functions are uniformly bounded with respect
tonie if1 <y < n,
max [L(z)| = [L(&)| = |L(cos ) |,

—lZs=+

dxé‘-;-:?,

where without any loss of generality

0

A

$

A
S

by Bernstein’s theorem

1
1 2 x Pot—
G -, I,(x) i i [ 2 / in 2 G i 2
— 2 /_1 v z A l(cos 8)°do > il 1(cos 9)“do > ~ ,(cos @),
which means, that our assertion is an immediate consequence of theorem I.

In §4, we shall be concerned with the interpolation property (8) and with the
consequences of the much more general supposition

(18) |he(z) [ S e, -1 Sz =1, k=1,2...2, n=12....

In our theorem V we show, that even (18) implies quasi-uniform distribution
as does (6) in theorem I. Tt is probable that (18) implies (6), but we cannot
prove it.

2.
TeeorEM I. If
izk(x)lécm’ —lgxé-!-l, k=1)"'np n=lp2y"'!
then we have
n n Cﬂ
Bon-oas2  y=12..,0-0,

and the upper bound 7s valid forv = 0 and v = n.
First we prove the lower estimate. For any 1 < » < n we have by Rolle’s
theorem

1 _ | L(cos 85™) — L,(cos 6

— 6] o — o

(19) (n)

I 9av+ll

_ |d£,(cos )} L
do e’
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where 0’ lies between 6. and 6.Z}. But by the hypothesis ,(cos 6) is a trigo-
nometric polynomial of degree (n — 1), for which
|,(cos ) | < ¢ia.
Thus according to a well-known theorem of Bernstein-Fejér
‘(%(359)' =< ap(n — 1).

Putting this into (19) we obtain

1 C20
20 S| = S
( ) 9-H. |—Cn(n_1)-—n
We now prove the upper estimate. Let
1) max (063} — 67) = o8} — 3" = 220w,
i=0,1,---n

We must prove that D(n) < ¢x; we cansuppose D(n) = 2. Let (65" + 6{1}) =
& and

6+ 8\° . g—8\*
1 SlnnT 1 sin 7 5
-3 N BN Y S <6<
a2 =l a5 | Tw| 5=s /0 05%="
851N s 2

This expression is in consequence of a well known identity, a pure cosine poly-
nomial in ¢ of degree (n — 1). Evidently

(23) o) 21
Further
+ —
4 B 2
/ =
@4 le®1 = Hetap| 4 §+ 5 n‘*(& —o02| . 60—
sin —— sin
2 2
Suppose first that 0 < § < Z; then(]s Aabm Eal—Ra& g
= 2’ = 2 T4’ 4= 2 T2
M o & \/ when | & | S3T by (24) we havefor0 = 6 = =
o 31r
O 1 1
[ <
@9) 1901 5 5 5 + o=

As ¢(0) is a pure cosine polynomial, we have

(26) > o(6”)(cos 6) = o(0)

p=1
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i.e. for # = § in consequence of (23), (26), (25) and the hypotheses

S 106)| = | 35 o0 (e0s )| = 3 (06™)  [Leos )|
7 bogier .
= 2—:’201 I:”zl (8(:'1) + 5)2 + E e[n) _ ) ] = Cmﬂ' [S], + Sg]
But by (20)
(283) aiujg(ﬂ_l)%o, ﬂ.=1,2,---ﬂ
(28b) § B ‘K?E”P
thus

n 1 7 1 ng @
b u; TN E I:(p 1) & o2 D(ﬂ)f:m]” ¢ u;o (v + D(n))”

and from D(n) = 2 we have
2 ]
dt  n 1
29 A PSS S S,
\29%) : e Jom— ¢ D(n) — 1

Furtherif 1 < » < n,

¥ 1 n 1 ” 1
By~ u-z; @ 5y + ;..;H Tl = 2 [D(n)Cm - Gio:lz
n "
(20) 2 1 o’ [ dt on’
1 T
+ ;}; D(n)cm Bl s " Lm—l 2 (D@ —1)
+hw—r—1=>

Putting (29a) and (29b) into (27) we obtain
97° 1o 3n’ _ 27+ a0 1 _ 2, 1

1< 4 alweny L _dir g L
on® oDy —1] 2 caDm) —1 2 "Dm -1
ie.
Dn) <14+ — 27“ clo = Cam.
6 — 67 < 2°ii—“” - Q.ed.

v=10 v=m"n
For the cases {0 <5< -.:r/2}’ {0 o 3 1rf2}’ {w/2 < & £ =} the proof follows

similar lines, Thus the result is established.
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3.

Tuaeorem IIL. |, If for the malrixz there exists an L-inlegrable s(x), which in
[—1, +1] lies between two positive bounds a and b(a < b) and s such that

1
fl.—(a:)s(x)dxgﬁ, 1=12--.m n=12 ...,
—1
then
6:12_85"};%’; v=0,1,---m n=12....
Let™ u be the greatest integer not exceeding s ) : ie.u>n/2,0= 7= x/2and
. R
1 sinpezn sinue—z—E
(30) fe,n) = 5| | — ;
¥ sin g -; i sin g 3 L)

then, for fixed 7, (8, %) is a cosine polynomial the degree of which does not exceed
(n — 1) and for which

Cay 1
31 a, =5 —, 06 =m.
@31) H6,m) | % o2
Lemmal., Ifw — 1/2p 2 n = 1/2y, then
Bl = f £(8, n)s(cos 6) sin 8df < i)
u 0 B
Without loss of generality let < #/2. We have
2 6—q\*
g+wip vixlp | T & T
(320) J ga/ 56,7 sinndo = 207 2 )t
p wpt 08— u
2
Further
4 1
; n s B4g
= { Sln ' . S0 ——

1 3 2cosq 2 6+

= a3 6. 0 do| < df

#4£ gy = sin @-s(cos 6) i _£ -39+7}OOS 3

sin —5— sin® —

1 Throughout this paragraph the ¢'s are independent of D, %, # and n, but dependent
on a and b.
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(32b) sing [* g
~= L —= cos (9 +n)del-b
sinT
4
i e o PE Si“’“%?
Sl | Bl || s
" #‘./;f»t‘_‘-#“.L NEX) & s
s
and
! . 8—q\* ] —a\*
|y [efsinE—— | |1 . sm;.ceTﬂ
1[ —— = ] s(cos8)sinfdo <b--;sinq[ — = _Jcos(8@—n)do
) sine — " ® \ sin e
2 2
4 00— I . 9—1;.“r
»8infpy — L« sinpg ——
2 co —
(32¢) + ,;’?l 8-2 00582’]0.’9 < es %f _8T2 dsg
LT “h |

1 1—1/u de 1 fﬁ-lf.ﬂ 1 x 1
+— f . A o + = f ——d .
u Jo (n—6)° [Tl T # i ut Jorrsu (8 — 9)?

Hence by (32b) and (32¢)

4 4
0 [ sin,u?—:g—n sinpg—g—j 1
(33) J = e El NET -+ i dé + = |.
smT sian' &

For the integral on the right, the integrand being even, we have

%ﬁhf(ﬂ, n) db.

But
6 4
| [ [sing %
(34) a;f — o | = A= D+ =D+ 1) <emd
2
_ 4
W ol el
by (22a) and by Parseval’s theorem. The same holds for = P ds.
7 Jo . B—q
sin
2

Hence by 9 = 1/u, (33) and (34) Lemma I is proved.
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Lemma II.  In the interval
09— 109+ 1usnr

we have
JO, m) 2 ca.
In this interval if |« | = 1,

4

sin 2

1 2

6,7 = -, = 3.
A L &
2u

Lemma IIL.  Consider the fundamental points cos 05", for which
O=)n—1/p28" S g+ 1w If

up = [ l;(cos 8)s(cos 6) sin 6d8 = 0, k=1,2,---n,
i}

then
S = Z < csan/u.

r
=1p=t, =ntl/n

By Lemma II and Lemma I we have

C3IS < 2 f(ﬁsn}J ﬂ)#v é Zlf(efrn}) 7!)#»

11/ p=8{M =g+1/p
m= f (6, )s(cos 8) sin 9dg < 7.
4 n

Hence
G L tan
Car “

Now we shall prove our theorem ITI. Let

D(n)
m 3(_’:) it 8‘(*3 = 85!‘] o 5“} =
i-U,!.'?'}'{'n (8551 ) +1 nt1

and we have to prove that D(n) < css . Let 3(6:11 + 6™) = 1 .

We may suppose without loss of generality that 5, £ x/2 and consider the
expression f(8, n) of (30) for » = ;. Starting at 6{}] mark off to the right
intervals of length 1/ till the whole of the interval [6{], «] is covered; the last
interval, the length of which is less than 1/, we add to the last but one. Simi-
larly, starting at 8,” mark off intervals to the left to cover [0, 8{”]. Let the end-
points (Fig. 2) be®, ,02, --. ,A;, Ay, - .. respectively. It is evident that
D(n) r

2n+2+£’

(35a) O, =mn+ r=20,1,2 -.-
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(35b) 4, =

Since
2 O3 — 6™ = =,
=0

the greatest distance between two consecutive 6{"’s is greater than or equal to
a/(n+ 1) ie 5 =7/2n 4 2), D(n) = x/2. Thus by Lemma I

(36) @—;—ﬂ-’ = ﬁ 5, m)s(cos @) sin §df = Zlf(ﬂim, M.

In the sum on the right consider the members for which 8™ lies in [, , ©,.).
For these we have by (31)

1
37 o o) =2
37) 762w 5 % ot
i B By Dn) | r+3”
and by Lemma III with n = S + 3t 2 + m
D 2
Cg I:m + In (1)2 + T2+ l]
(38) Z pi < H
Gréss"’éerﬂ K
Hence this part of the sum (36) is, by (37) and (38), less than
D(n) 2r 4+ 1
acnm T2t 2
u® ( D(n) r)‘
+ ol
2n + 2
(39) o I 1
m
U S R U |
A (D(n) 5 M+g)ﬂps '
2n 4+ 2 2n + 2

This holds evidently also for (6,11, @) with r = 0. Hence the partial sum of
(36) summed over all 7 = » 4 1 is in consequence of 3(n 4 1) = pu = n/2less
than

"% 1 1 = 1< 1
o L‘a § O + &y T w § (D(n) VOEDIM EE (D(n) + r)*]

2 Tt is clear, that for each such 9, n = 1/2u is satisfied.
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and by ;1 = x/2n

Cam 1 2 30347}1
(40) % —n*![D(n)a g D(n)=] < aDm)

The sum for ¢ £ » may be estimated in the same way. Thus by (36) and (40)
we obtain

exm . 3Cum

« = nD(y’
D(n) = ca. Q.e.d.
TuroreM IV. If for a matriz we have

’ f_i 1(z) dz

o =gl sl s, W L8, e

=< cun’®,

Proor. Letn =9, rbeeven and = 4, the odd integer m = 5 so that
(41) im — 1yr =n -1,
r and m are indefinite for the moment with only the restriction that both tend to
infinity asn — «. Let

max (65 — 6,”) = 0,51 — 6" = 25(n)

i=0,1,+2*n

16 + 6 =0,

and
1 sin m E—E-E sin m #
) 10 =\ —oz¢ | "\ =g
s 9 s1n )

Evidently f(8) is a trigonometric polynomial of degree 3(m — 1)r £ n — 1
and as f(8) = f(—#9), it is a pure cosine polynomial. First consider 0 = ¢’ =
r/2;if /2 < 8 < m, the proof is similar. As é(n) = x/(2n + 2) we have
0 =x/2n + 2).

Asm = 5, the interval (¢, & + »/m] will lie entirely in [0, =].

Then, as ris even and 8’ £ =/2,

2m8 — &\
¥ . 1 [z T2 )2 (2) 2
s |2 =(2) Zon).
(43) ﬁ f(8) sin o do _m"lf P T&('n)dﬂ b= (n)

2
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The degree of f(f) being (n — 1) at most, we have
; 7(8{”) Lcos 6) = f(6),

hence by (43)
2(g)r'5—f—n’i) =< f " f(6)sin 0o = if(w‘"’) f " li(cos ) sin 00
@4y ' - ’

= [Z 0 [ oras 5 o n 1100

As|3(6 — ') | < 7/2, we have from (42)

us) e | s L [[1 (BE"’I- i + i ;n)]-,] 92’

™

by putting (45) into (44)
2\" 8(n) i r Y\
2(;) = o z(m_(n)) '

1

(46) i) < g 2 m*n“‘“)m.

2

thus

Now let r be the greatest even integer not exceeding log » and m be the greatest
integer less than (2n — 2)/r; then (41) is satisfied for sufficiently great n and
thus by (46) we have

5(n) < ciglog (n + 1)
— n ]

which establishes the result.

4.
Here we have to prove that from
(47) | 0(z) | W(@)* = | ha(@) | = 36
—1l=sz= 41, k=12 ..-mn, n=12 ...,
follows

a1
C;
Mgl M
i n

21 The upper estimate holds for» = 0, 1,2 -+ - n, the lower forv = 1,2, -++ (n — 1).
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We obtain the lower estimate as in theorem I, namely

1 _ h,(cos 85) — R, (cos 657 _ dh,(cos )
|65 — o™ | o3l — 8t” do

f=g)

where according to Rolle’s theorem ¢, lies between 8™ and 653} . Since A, (cos 6)
is a trigonometric polynomial of degree (2n — 1), we obtain by Bernstein’s
theorem

1
o) _ gt =(@2n-1) max | h(z) | = c3e(2n — 1),
Ve v | —l=zx
hence
1 [
(ﬂ)_ (n)z_ﬁ_ ‘E = e ___1
(48) 0,41 8 = 03'}(2?3 = 1) > = v 1,2, (?1 )

Let us now consider the upper bound. Let

% W » _ 2D(n)
49 . E)__g)___e(ﬂ)_a(J: ,
(49a) ‘_jlﬁ{g“(ﬂ 1—-6"Y) =61 —6, Sl
and
(49b) 1o + 1) = oa.
From

> -6 =
we obtain
(49¢) D(n) =z =/2.
Without any loss of generality we may suppose
(49d) 0 = ¢ = /2

Let ¢(z) be the polynomial (its degree does not exceed (n — 1)), for which
¢(cos 6) is identical with the polynomial defined at (42) if we replace 8’ by ¢»

andr = 10, m = I:n g 1:|. Since

Cag

(50) |6 (cos 8,”) | < AT — a0
we have

|
61 15 bleos) = 33 oleos 0 Lieos ) < 2 3 Luloos e .

Casel. |L(cosegs) | n* |0 — 0 =1,2,-.-n.
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From (51) we have

Czg > 1
(52a) T n S0 — @
and by (48)
(52b) iaEn) _ ‘02! gD(ﬂ') + |#_V1037640-

n+1
Finally by putting (52b) into (52a) we obtain

= 1 Cq2
LS ea 2 s ot = F < Dny’

D‘(ﬂ) = Cany

which settles case I.
Case II. A. There is a k such, that

(53) | i (cos @o) | > n* (6" — @2)°

and I (cos 8) takes its absolute maximum in [6”, 653]]. First we require two
lemmas.

Lemma 1. Let f(8) be a cosine polynomial of degree m, the roots of which are all
real and distinct

(o S0 =Y <Y <ok <Y = (= ),

taking its absolute mazimum in [, ¥.11]; then to every & in [y, , ¥..1] there exists an
interval [ such that:

1. lliesin [{y, ¥sil,

2. £1s an endpoint of I,

3. The length of 1 vs greater than 1,/2m,

4. For every 6 lying in [ we have

| 70) | > 3 |f®) |

Proor. According to the hypothesis f(#) has in [{, , ,.1] the unique extreme
8 = ¢ ; we can suppose this to be a maximum. Suppose first £ £ ¢3. If
£+ 1/2m = ¢ ; our lemma follows from the fact, that f(6) is monotonously
increasing in [£, ¢

Suppose now £ + 1/2m > ¢;. Then Bernstein’s well-known theorem gives

| £8) | = mf(es)

and from this we have

1 Eim
e+ )=t + [ r@a
(59
1
o

> fles) — 5 mf(es) = §f(es) = 3£(8).
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As (54) a fortiori holds for £ < 6 < ¢ 4 1/2m, the lemma is proved for £ < ¢s .
Similarly for § > ¢; we consider the interval [§ — 1/2m, £].

Let us now consider the case IT A. Since I,(cos §) takes its absolute maximum
in [65™, 65%}], we obtain from our lemma by putting f(6) = L(cos 0), £ = ¢2,
and (53), thatin [g; , ¢ == 1/(2n — 2)]” and a fortiori in [g , ¢ =& 1/2n]

8
| l(cos 8) | = 3 |Lu(cos @) | > %]Gﬁ"} — el
Thus for ¢s & 1/2n = @™ we have

8
(55) | le(eos @) | > 2|67 — "

A simple geometrical observation shows that if for the linear function a(z) =
ar 4+ 8

‘1(51) = 1:
and, further, & and ; lie on the same side of £, , then
1&—& ]&+Ea_£|
- 2 2 i
(56) max (|a() |, |a(&s) ) = T
‘——2 - 51‘ - &

By applying (56) to a(z) = 6«(z) and putting & = cos 65, & = cos ¢z, &5 =
cos ¢4 we obtain

COS ¢ —2]— CORN - e B
6 2 o
(67)  max (|6u(cos @) |, |6a(cos pd ) 2 oot =
— g9 T cos Ox

Replacing in (57) § (cos g2 + ¢0s ¢:) by cos ps(02 = 95 = @u Or ¢4 = @5 = o) We
have

24
COS @5 — COS ¢4
08 @5 — cos O™

.

(58) max (| 6:(cos ¢2) |, | Gx(cos ¢4) |) =

Now we prove
Lemma 2. Let 0 = A < Ay < N = m, then

" 4 ()\1 _ M)s. 25
T\ — A

22 The sign which we must take depends only on the position of ¢a.

# From the lemma it follows that ¢, also lies in [6.", 6511].

# Tt is clear, that the numerator can also be written in the form | § (cos¢: + coses) — cos
o1 | . We use this form if ¢, lies between s and 6. ; if ¢4 lies between ¢; and 6" we use the
form (58).

% Obviously one and only one of these two cases arises; we suppose in the text the second
one. Evidently the same inequality holdsfor0 = A < M < M = 7.

COS A\; — COS M
COS A} — COS A3

(59)
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Proor. Obviously if £ 0,04, = X, , [ cos A\, — cos )\, | is the projection of

A, A, ; then for fixed \s — \; and A\s — \; the quotient M[ takes its
€03 A1 — COS Az

minimum at A; = 0; the value of the minimum is evidently

. 2
1—cos Nz — A1) 2 4 ()\2 — )\,)’

= =
1 — cos ()s s }\1) s ha — Rl ls -_ R;

2

Fic. 3

which proves the lemma.
Applying lemma 2 to (58) we obtain
4

(60) max (| 8:(cos ¢u) |, | 0a(cos @) ) 2 — ( N B‘f:,)z
L5 —

Now from the definition of ¢; and by | ¢z — ¢ | = 1/2n we obtain

. 1
(61a) los — @u| > Ton
and
(ﬁlb) i w5 — 3;(,") ] < }(pg = ﬂé'ﬂ | -
Putting (61a) and (61b) into (60) we obtain
(62) max (| 8.(cos @) |, | 0:(cos o4) |) = :

251:2 nﬂ(w _ 91’(‘!‘!))2’
which with (53) and (55) gives

(63) css = max (| L(cos ¢2) |, | Lcos ¢4) ) = esn' (e — 657"

 If gs lies between ¢ and 6" (see footnote 24) then |¢x — ¢z | > 1/10 7 holds instead of
(61a) and | g5 — 6, | = (1 4+ 51 | o — 6," | instead of (61b), since according to (49¢) and
los — @2 | < |¢4 —¢2| =1/2n,
o 6{:&}
+1<1+~

a(n)

'Fs—!?k
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Hence
(64) =67 < S,

which evidently means that

n n n C
(65) 65— 0| 2 [ — 67| 5 %

and this settles IT A.
Case II B. There exists a k such that

(66) [ 1(cos @) | = n*(pe — 6™)°
(n)

and I; (cos 0) takes its absolute maximum outside (6™, 853i], at 8 = 5. From
the definition of ¢s we have

(67) | 1i(cos @s) | = n¥(pe — 65™)°

The only property of ¢, used in the proof of (62) was that its distance from ¢,
lies e.g. between =/8n and w/4n. Thus (62) holds here too, if ¢; has the same
meaning as in case I and instead of ¢, we take an arbitrary point ¢ of the interval
los &= 7/8n, @2 = 7/4n].” We remark, that ¢ is farther from ¢, than ¢, and
note, that by using (66) and (67) the whole idea of the proof of case I1 A may be
applied here too, if we have proved following lemma.

Lemma 3. Let ¢(z) be linear and denote the minimum of maz (| ¢ (cos ¢2) |,
| ¢ (cos @) | ) by M = M(ps, a, 65™), if ¥(x) runs over the lines, for which ¢(cos
o) = 1. Then M does not decrease, if 0™ and ¢, are fized and |a — o2 |
increases (a = 6.™).

If o2 and « lie on the same side of 8™ and « is fixed then the minimum is
attained for the straight line connecting the point (cos 8™, 1) with the bisecting
point of the distance (cos @, 0) and (cos ¢z, 0). This evidently proves the
lemma for this case and it is also clear, that the minimum is less than 1. If «
and ¢ are situated on opposite sides of 6™, the minimum is attained if y(z) =1
and then its value is 1.

MANCHESTER, BUDAPEST.




