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Let

be a positive definite quadratic form with determinant D R and integer
coefficients a ;- Call it an even form if all a ; ; are even ., an odd form if at
least one a ;; is odd . Then Í,, is called non-decomposable, if it cannot be
expressed as a sum of two non-negative quadratic forms with integer
coefficients .

Mordell 1 ) proved that f, can always be decomposed into a sum of
five squares of linear forms with integer coefficients . Ko 2 ) proved
that fn can be expressed as a sum of n + 3 integral linear squares, when
n=3, 4, 5 .

When n = 6, Mordell 3 ) proved that the form

(1)

n

n =

	

aij xi xj.	a;, = aflÍ,i = t

6

	

6
X2+ ~~ x i ) 2 - 2x 1 x2 - 2x2 x3

i= 1

	

s=
1

of determinant 3 is non-decomposable ; and Ko } ) proved that (1) is the only
non-decomposable form in six variables .

1 ) Mordell, Quart. J . of Math. (Oxford) 1 (1930), 276-88 .
2 ) Ko, Quart. J. of Math. (Oxford), 8 (1937), 81-98 .
3 ) Mordell, Annals of Math . 38 (1937), 751-757 .
4 ) May appear in Acta Arithmetica .
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When n = 7, 8, Mordell 3 ) proved that the forms
n

	

n
x -{

	

xá ) 2 - 2x 1 x 2 - 2x2 x3

	

(n = 7, 8)
i=1

	

t=1
with determinant D; = 2, D, =1 are non-decomposable .

In the present paper, we shall prove the following theorems
THEOREM 1 . When Dn = 1, there exists an odd non-decomposable

form, if n > 12, except possibly for 13, 16, 17, 19, 23 ; and an even non-de-
composable form for all n = 0 (mod 8) .

Hitherto the only method known for finding forms with Dn = 1 for
n > 8 was that due to Minkowskí `) .

THEOREM 2. For every k > 0 and n > 13k + 176, there exists a non-
decomposable form in n variables with D n = k .

THEOREM 3 . There exist non-decomposable forms for every n > 5 .
From theorem 1, we can deduce that the class number h n of positive

definite quadratic forms with D n = 1 is greater than 2tin for large n But
Magnus6) proved that the mass of the principal genus is greater than
nn 2 (1 - 0 A for n > n o , where s = s (n o ) is a small positive number, and so,
as Dr . Mahler points out, it follows that h n > nn 2 (1 -0/4 for n > n, .

Any quadratic form can be reduced by a unimodular transformation,
i, e. integer coefficients and determinant unity, to the form

n

	

n-1
aa x2 + 2 1 b;x.x+l .

i=1

	

i=1

This and its determinant may be denoted by

l a,

	

a2

	

an ) and
l

	

b,

	

b2

	

bn-1
ana,

	

a2
b,

	

b,

	

. . .

	

bn_1

respectively . If, however, say a, = a;, _ . . . a n = c and b 4 = b3 =
. . . = bn_1= d, we may write

(
al

	

c(n-1)

	

with obviously similar
b,

	

d(n-2))
extensions .

1 . Some lemmas .

LEMMA 1 . The determinant of order n

5) Gesammelte Abhandlungen von H. Mínkowskí, 1, (1909), 77 .
6 ) Magnus, Math. Annalen, 114 (1937), 465-475.
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do = 2( ~)

	

= n + 1 .
1(n-1)

It is evident that d, = 2 and d2 = 3 . Suppose now dm = m + 1 for
all m < n, then

dn -2dn_1-dn-2-2n-(n-1)-n+1 .

LEMMA 2. The only squares which can be subtracted from the form

n

	

n - 1
f (x) = 2

	

x; -i- 2

	

x;xi+i

	

(n > 3),
i=1

	

i=1

so that the remaining form is non-negative, are x Í , (x; + x;+1)2 (i = 1 , . . . ,

n - 1), and xn .
Since we can write

n-1
f(x) = xi +

	

(x; + x ; +1) Z + xn
i = 1

the unimodular transformation

xl = y„ x; + x;+1 = (- 1)i-1y,+i,

	

(i = 1,, . .,n-1)

carries f (x) into

if

n

	

n

f(y) _

	

y2 ~- (

	

y,)2.
i=1

	

i=1

n

F(y) = f(y) - ( L(y) )2,

	

L(y) _ 1 a;y ;
i=1

is non-negative, then it is -evident that a, can be only ± 1 or 0 since

F(0, . . .,0,1,0, . . .,0) = 2 - ai , 0.

I. Suppose first that one of the a' s is zero, say a„ = 0 . Without loss
of generality, we can assume that a 1= ± 1 . Then

n-1

	

n-1

	

n-1
F(a,,a 2 , . . • ,an-1, - a) = 2 + f a2 + ( f a;)2 - (1 +

	

a2)2
i=2

	

i=2

	

i=2
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n-1
1 - ~ ai < 0,

i=2

if at least two of the az , . . . , aa_ 1 are not zero . Hence we need only consider
either a z = . . . = an_, = 0, and then L (y) = y,, or only one of these a's
does not vanish, say a L

	

0. But then F (y) is indefinite, since as n > 3,

F(2a„ 2a 2i - .a„ -a,, 0, , . . , 0) = 2 2 -I-- 2 2 + 1 + 1 + 2 2 - 4 2 < 0 .

II. Suppose next that none of the a's are zero. If two of them have
different sings, say a, = -- a ., then

n
F a„ a,, . . . , a„) = n + (

	

a,)2 - n 2 ~< (n - 2) 2 + n - n 2 < 0.
i=3

From I, and II, it follows that F (y) is non-negative, if and only if
n

L (y) = y ; (i = 1, . . ., n), or ~l y,. This clearly proves the lemma .
i=1

LEMMA 3. The form
n

	

n-1
f(x) = axi -f 2(3x,xz + 2

	

x? + 2 71, x ix,+l
i=2

	

i=2

with determinant D„ < n, where a > 0, = 0 are integers satisfying the
conditions :

P2>a>(I-1/n)(32,

	

2 , Win,

is positive definite and non-decomposable .
By lemma 1, f(x) is positive definite, since its determinant is

D„ na - (n - 1) R2 > 0,

and clearly all its principal minors are positive .
First, we shall show that nondecomposítion of fix) involving a linear

square exists . As in lemma 2, we can transform f (x) into

n

	

n

.f(Y) - ayi + 2PY,Y, + v, y? + (

	

y, )2 .
i=2

	

i=2
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By lemma 2, it follows that the only squares which need be considered are

(1) (a,Y,)2 , a, + 0, (2) (a,Y, + Y2) 2, (3) (ay, + Y , ) 2 (i = 3, . . ., n) and
n

(4) (a, y, +~:
Y , ) 2 •

i=2

T :

The case (1) is ruled out, since Dn - nag < 0, For the cases (3) and
(4), we need consider only the square (a,y, + y3 )', since f (y) is symmetrical
in y37 . . .,y n , and the transformation

n

Y3 -> - 1 Yi

	

Yj -> Y> (i = 1,2,4,5, . . ., n)
i=2

n
permutes y3 and

	

y,) 2 .
i=2

Consider first the form

The transformation

F2 =f (y) - (a,Y, + Y2)
2

n

	

n

_ (a - ai) Yi + 2 (R - a,)Y,Y2 +
Y, Y; + (~Y..J y i) 2 .
i=3

	

i=2

n
Y2-~--~:Yj, Yj->Yj (1 = 1,3,4, •

	

+ n)
i=1

carries F2 into
n

	

n
F2' _ (a- a 2 )y2

- 2(R - a,) Y,(j Yi) + Y, Y2
i=2

	

i=2

n

_

	

(Yi- (R - a,) Y,)2 + (a -

	

- 1)(R - a,) 2)y, .

i=2

The maximum of the coefficients of y;

A=a-a2-(n-1)(R-a, )2

for different al occurs when a, = (n - 1) R/n . Since 0 < R/n < 1, we have
for a,= R, R - 1, respectively,
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A=a-R2<0 and A=a.--N2+2P-n`0,

so that F 2 ' is indefinite. This settles the case (2) .
Consider next the form

F3 = j (Y) - (a, Yi + Y3)2
n

	

n

a2 ) Yi + 2PY,Y2 + Yz + 'Y Y2 + (~ Yi) y - 2a,Y,Y34
i=4

	

i=2

The transformation T carries F;, into

n

	

n

F3 = (a - ai) Yi + 2NY, Y2 -r 2a,Y, (1 Yi) +

	

Yi
i=2

	

i=2

n

S (Yi+a,Y,)2+(Yz+R+a,)Yl)2+(a - aí-(P+ ,
i=3

- 2)a2)Yi ,

The maximum value of the -coefficient of y',

A'=a-al-(R+ a l ) 2 -(n-2)ai

is reached when a 1 =- fAln. Since - 1 < - (i/n < 0, we have, for a 1 = 0, -- 1,
respectively,

A'=a-(i2 <0 and A`a - P 2 +2, - n<0,

F, is indefinite and cases (3) and (4) are also settled .
Suppose now there is a decomposition

f (x) =f'(x) + f''(x) .

No term x 2 (i ? 2) can occur in either f' (x) or f" (x) for then a square can
be taken out of f (x) . Hence we can assume f '(x), say, has a term 2x2,
Then J'(x) must also contain 2x„_ Ixn , for otherwise f"(x) assumes negative
values by choice of x n . Then f (x) contains also 2xn_ 1 , for otherwise f ' (x)
wí11 assume negative values by choice of x n-i . Proceeding in this way, f'(x)
will contain all the terms of f (x) involving xn , x„_l , , , ,, x2 , Hence
f"(x) = ax', and so a square x2 can be taken out from f (x), which con-
tradicts what we hawe proved,

LEMMA 4. If n $2a , pa, 2pa, where p is an odd prime and a is a po-
sitive integer, then there exists an odd non-decomposable form in n variables
with determinant unity.
Consider the form
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f _ (x
Y

	

1(-2)

in n variables. It is easy to calculate by using lemma 1 that its determinant
has the value

D~ = nx - (n- 1)y' .

Putting D n = 1, we have to solve the congruence

(2)

	

y2 == 1 (mod n) .

Since n + 21 , pa, 2p-, we can write

n-a .b, (a, b) =1, a>2, and b>2.

Suppose y,, y 2 are the solutions of the congruences :

y 1 --1 (mod a), y,=-1 (mod b), 0 < yl < n ;

Y2 = 1 (mod a), Y2 _ - 1 (modb), 0< Y2 < n .

Both y, and Y2 satisfy the congruence (2) and since

y l+y2 -~ 0 (mod n), 0 < yl < n, 0 < y2< n,

we have

Y1 + Y2= n .

Hence one of the y,, y2 is less than 2 n and we take this value to be our y,
which satisfies the inequality 2y < n ..

From Dn = 1, we can obtain the inequalities y2 > x > (1 - 1In)y 2.
Hence the form f„ satisfies all the conditions of lemma 3 and is non-de-
composable .

fn is an odd form if x

	

((n- 1) y2 + 1)jn is odd x is evidently odd
if n is odd. If n is even, we write

x = Y2 - (Y2 - 1) In .

Then y must be odd and from the congruences

y-=±1 (mod a), y =-+l (mod b), (a, b) = 1, ab = n,

it is clear that if a is even, then b is odd, y ± 1 is even and so (y2 -1) I n
ís even and so x is odd .
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LEMMA 5. For any n = 8m, there exists an even non-decomposable
form in n variables with determinant unity .

Consider the farm

- (8m

	

2m

	

2(8ní-2)f(X)

	

4m-1

	

1(8m-2)

in 8m variables . By lemma 1, the right lower corner (8m - 1) -rowed minor
or the determinant D8m of f (x) has the value

2m (8m - 1) - (8m - 2) = 16m'- 10m + 2 > 0,

and so

Dér„ = 8m (16m' - lom + 2) - (4m - 1)'(8m - 1) = 1 .

Hence it is clear that f (x) is an even positive definite quadratic form with
determinant unity .

To prove the non - decomposability o f f(x), we first show that no square
can be taken out from f (xj .

Let Q be the matrix of f (x), then the adjoínt form of f(x), say F, has
matrix Q -' . Since

QQ -, Q = Q,
F ti f (x), and so F is also even. Hence all the (8m - 1) -rowed minors of
forms equivalent to f (x) are even. Suppose now a square L' can be taken out
from f (x) . A unímodular transformation carries f (x) into

8m
f' (x) _ I a ., x, x .

	

(au a.)
i,j=t

and L = x1. Then the determinant of f(x) - x,2 is

a ll - 1 a12 . . . a1f8m

a21

	

a22 —a2,8m

a 8m,1

	

a8m,2' ' ' a8m,8m

-1 - A,

where A is the minor of the element all in the determinant of f (x) . Since
A is even, 1 - A < 0 and so f'(x) _X2 is indefinite .

Suppose now f (x) is decomposable, say

f (x) =f:, (x) +f 2 (x)

By the same argument used in the last part of the proof of lemma 3, one
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of the f ((x), f2 (x), say f2 (x), can at most contain the variables x, and
x, . Since all binary non-negative forms can be expressed as a sum of
squares of linear forms, a square can be taken out from f (x) . This con-
tradicts what we have just proved) .'

LEMMA 6, If there exists an even positive form in n variables with
determinant unity, then n is divisible by 8 .

Suppose there exists an even form fn with determinant D n= 1 . Then
by a unimodular transformation, we can change f,, into

2a,

	

2a2

	

2a3

	

, . • 2an-1

	

tan
b 1

	

b 2

	

b3

	

'

	

, .

	

bn-1

	

) •

A simple determinant calculation shows that D n is even if n is odd. Hence
n is even. Let the left hand corner ;principal minors of D„ be 2D 7 D_,, 2D 3 ,
D4 , . . ., 2 Dn _ 1 , and write D,= 1, then

2D, = 2a,, DZ - 4a2 D1 - Do b i , . . ., D2 _ 1 = azi-1 D2i-2 -Dzi-s bzi-z(3)

	

Dzi = 4a2i D 2i-1 - D2i-2b2i-1 , . ., Dn = 4an D n-1 - Dn-2 bn_ 1 = 1 .

From these relations, it is easy to see that (D,, D,+,)
(D4, D,+1 ) = 1 for i = 1, . . ., n- 1 . Since

0

	

0

	

0 . . . 0

	

0
b,

	

b2

	

b3 • . , bn _ 1

all the b2i+1 are odd . By taking congruences modulus 4 in (3), we have

D2 == b2

	

D4 =-_D2 b3 =- 1 (mod 4) .
It follows, by induction, that in general

D41 J-2 - 1

	

and

	

D41 =- 1 (mod 4) .

Hence the D2f are odd and n - 0 (mod 4), say n = 4m. Write Dzi+, =
2`2i+1Dz,+1, where D'2f+1 is odd . It is evident from the last relation of (3),
that the D4m-1 9 D4m _2 satisfy the relation

7 ) This argument shows that the even positive definite form with determi-
nant unity

D =n b, b3 . , , bn-, (mod 2),

8m

	

Sm
h (x)= v x2 + ( v xi)` - 2x,x, - 2x,x.n, + 2(m-1)x2

i=1 r

	

i=1

	

8m

D„ = 1 and so

given by Korkine and Zolotareff in Mathematísche Annalen, 6, 1873, p . 366-389 (brought
to our notice by prof . L• J. Mordell) is non-decomposable . It is probable that h(x) is
equivalent to our I(x) for the same m .
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(- D4m-2 ID'4m-) = 1,

the symbol being that of quadratic resíduacity . Since -D 4m-2 = '(mod. 4),
and D4m-2 - - 1 (mod 8), when t4m--1 > 0, we have

1 (D4m-1 //D4.-2) (D4m-1/D4m-2 ) '

From the relation D4m_1 - a4m-1 D4m-z -D4m-3 b4m-2 of (3),

1 = (-D4-3ID 4m-2 )
i

	

I

(2 14m -3/D4m-2) .( - 1) 2 ( 4m-3+
1)

D4m-2 D4'(

	

/ m-3)
r

(214m-3/D4m- 2 ) ' ( - 1 2 `D 4m- 3 1)
( -D4m -4/D4m-3)0

since again from (3), D4m-2 - 4a 4m-2 D4m-3 - D4m-4 b4m-3 • Hence
i

1 = ( 2í4m-3/D

	

- 1) z ID4m-3 1) + 2 (D4m-3 - 1)
(D'm-3/D4.-4)4m-2)' (

	

4-( `2,í4m-3/D4m-2 ) (2í4m- 3/D4m-4~ `D4m-3/ D4m-4 ) '

From the relation 4 Qom-2 D4m-3 - D4m-4 b4m-3 = D4m-2, we have, when
t4m-3 > 0, since b4m-3 is odd, D4m-2+D4m-4 = 0 (mod 8). Hence

(21D4m-2) - (2/D4-4) and so
(2í4m-3 'D4-2) (24.-3 //D

	

í 4m-4) = 1 '

Hence

1 = - `D4m-3 /D4m-4) '

or

	

(D 4-3/D4-4) - 1 '

Continuing this process, we get
(D4-8i-3ID4m-8i-4)

Hence

D4.-8i-4+ 1

and so 4m - 8i - 4 $ 0, or n is divisible by 8 .

LEMMA 7. The positive definite forms :

(8m

	

2m

	

2(8m-3)1
4m-1

	

1 (8m-3)

- ($m

	

2m

	

2(sm-4))
4m-1

	

1 ($m-4)

	

,

f8.-1

J8m-2
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In 8m - 1 and 8m - 2 variables with determinants 2 and 3, respectively,
are non-decomposable .

Let us first consider the form f8-2 . From the argument used in the
last part of the proof of lemma 5, it suffices to prove that no square can
be subtracted from fs.-2 • Suppose A.-2 - L' is a non-negative quadratic
form with integer coefficients, where L is a linear form in x„ . . ., x8-2 with
integer coefficients having no common factor . By an unímodular transfo-r-
mation, we can write L = x„ and then

8m-2
J 8m-2 ti főm-2

	

2, aij xi xj

	

(alj = aj),
ij = 1

where f8m_2 - xi is a non-negative form . Let the cofactor of a,, in the de-
terminant of f8m_2be A21 ; then the determinant of f8m-2
and ist not negative . Since the adjoint form of an even form in an even num-
ber of variables is even'), 4,, 2 . Consider now the positive even de-
finite form

6

	

6

	

8m-2
J 8m +4 8X2 + 6x1 x2 + 2

	

x i + 2

	

x i xi l + Y aij xi+ó X .J+6
i=2

	

i=2

	

i,j = 1
in 8m + 4 variables . On bearing in mind the method of lemma 1, the lower
right corner, say l . r . c., (8m-1)-rowed minor of the determinant of főm+4
has the value 2 . 3 -2 = 4 ; the 1 . r . c. 8m-rowed minor is 2 . 4 - 3 = 5, the
1 c. r. (8m + 1) -rowed minor is 2 . 5 - 4 = 6, the 1 r . c. (8m + 2) -rowed
minor is 2 . 6 - 5 = 7, the 1 . r. c. (8m + 3) -rowed minor is 2 . 7 - 6 = 8
and so the determinant of f8+4 is 8 .8- 3' . 7 = 1, which contradicts lem-
ma 6 .

Next we prove that no square can be taken out from f,,.-land hence
fsrn ,ís non-decomposable . If fő .-1-L' is non-negative, then L cannot con-
tain a term involving x ; (1<i C 8m - 2), for otherwise, by putting x8 ._, = 0,
we would get a decomposition of A-2. Hence L = x8m l. But f8_1 -xsm-1 is
indefinite, since the determinant of fő .-1 - xsX2_1 1 s 2 - 3< 0 .This compl e-t es

the proof .

LEMMA 8. Let the positive definite quadratic forms :

g1 = fn, (X1 1-1 xm) ! 	92 = fn-m-1 (Xm+2 ,	, x) f

93 = bX2 + 2X.+1 Xr +2 + 92
,having determinants D1, D2, D3, respectively, be non-decomposable . Denote

s) Bachmann, Zahlentheoríe, vol, 4, part 1, 444 .
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by A the value of the upper left-hand corner principal (m - 1)-rowed minor
of 0 1 , If there exists a positive definite quadratic form of determinant
0 ` 01 02.

g = g1 aX zm+1 + 2Xn,Xm+ 1 + 93,
where a is an integer and 0 < a < AID, then g is non-decomposable .

Suppose g has a decomposition

If one of the h'S has a term involving xi (i = 1, . . ., m), it will contain all
the terms of g1 , for otherwise we would get a decomposition of g, by
putting xm+1 = , . , = xn = 0. Similarly, if one of the h's, say h, has a term
involving x i (i = m + 2, . . ., n), it contains all the terms of g_ . Then h must
contain the term 2x '+i Xm+2, for otherwise, h' wí11 assume negative values
by choice of x m+2 . Then h contains also a term b'xm+1 with b'> 0, for other-
wise, h wí11 assume negative values by choice of x .+, . Next b' = b, for if
b' < b, on putting x, =	m = 0,

h = g2 +2xm+,x.n {-2 + b' X2
M+1 .

This is indefinite, since g, is non-decomposable . Hence h contains g,, . Hence
we may suppose that either h contains both g, and g j , or h contains g, and h'
contains g,

In the first case, h' can only contain the terms or part of the terms of
g - (g1 -+- g3 = axm+1 + 2xm xm+1 . Then h' = Cxm+, with 0 C c < o, since
if h' contains the 2xm xm+,, h' wí11 assume negative values by choice
of xm . Hence

h = g - cxm+1 ,
Since the cofactor of the coefficients of x 1

	

in the determinant 0 of g, is
0102, the determinant of h ís - C 0102' By hypothesis, - 01 JA < 0,
h is indefinite .

In the second case, h must contain the term 2xm Xm+,, for otherwise h'
wí11 assume negative values by choice of xm, Then h contains also a term
c'xm+1 ,c' > 0, for otherwise h wí11 assume negative values by choice of x m+, .
Also

h g, + 2xm xm_F1 + C'Xm+1 , h' = 93 + dxm+1 ,

since h' contains g . . Hence a = c + d and so c c a for d cannot be nega-
tive, as g, is índecomposable. It is easy to see that the determinant of h is
c' 0 1 - A . By hypothesis, c' JD, c a JD, c A, and so h is indefinite, Hence (4)
is impossible and the lemma is proved .
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LEMMA 9. For every n 12, except possibly for n = 13, 16, 17, 19,
23, there exists an odd non-decomposable quadratic form with determinant
unity .

Suppose n + 2 can be expressed as the sum of two positive integers
n1, n77 where n1 = 8m or a 2 - 1, and n2 $ 4, p', 2pa, p being an odd prime
and a an integer . Let the form

(5)

	

a l

	

az

	

a 3

	

,,, an,-2
b ,

	

b2

	

b3

	

bn1-2
in n1 - 1 varíables wíth determínant 2, containing a minor

(6)

	

a,

	

a2

	

a3

	

an i-3
b,

	

b2

	

b3

	

bn,-3
be non-decomposable . Such farms always exist, for if n, = 8m, we can by
lemma 7, take the form

(8m-3)
and if n, = a 2 - 1, by lemma 3, the form

(7)
From (5) and (6),

a,

	

a 2

	

a3
b,

	

b 2

	

b3
and so as in lemma 1,

b,

(8m

	

2m
1 4m-1

	

1

(
a z -

1 a
2(n, 2)

1

2(8m-3)) ;

(n,- 3)
Consider now the odd form .

Jn al b,
a2

b2
a3

b 3

	

.,,

	

bnt z

in n variables with x, y satisfying the relation
n,x - (n2- 1) y2 = 1 .

bn1-2

	

1

an -, 3

	

2(n2-3)

	

x
1

	

1 (n~3)

	

,J

	

,

3

a,

	

. . . an I-2

	

anl-1

	

3

	

2(n.-4)
bn,-2

	

1

	

1(n2-4)

a,

	

. an,-2

	

an,- 1

	

3

	

2(n2- 3)
bn 2

	

1

	

1(n2-3)

1

=3

= 3.2 - 3=3,

= n 2 - 1,

= n2 .

and the determinant of fn is n,x - (n 2 - 1) y2 = 1 . From lemma 8, on taking
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g2 =
( 2(n2-4) 1(nt-4)

2
y x), a -

_
1, 93 = (

2(n2-3)
1,(n2-3)

2
y xn23)

	

)'

g' = la,

	

. . . an. 2

	

an- I
1

	

b i

	

bn,-

	

J2

2(n.,-4)

	

2

	

x
1(n 2-4)

	

Y D3

~D,= 2, A = 3,

2(n 2-3)

	

2

	

x
1(n 2-4)

	

Y

f. is non-decomposable if g 27 g 3 are non-decomposable . From lemma. 3, we
need only show that
(8)

	

x < Y 2 ~

(9)

	

2y G n2 - 2,
the determinant of order n 2 -2,
(10)

	

J2 < n2 -2,
and the determinant of order n 2 - 1
(11)

	

03 < n2 - 1 .
By lemma 1 and (7),

-

	

- 3) Y 2 = 1 - 9, + 2Y2( 12 )

	

2

	

(n - 2) x - (n2 ,
JD ' = (n2 - 1) x - (n2 - 2)y2 = 1 - x + y2,

We now solve (7) . Since n 2 4, pa, 2pa ,

Y 2 -= 1 (mod n 2 )
has a solution Y satisfying the inequalities

(13)

	

1<Y< -1, n2 .
Then taking y = Y in (7), we have a solution (x, y) . Then (8) evidently
holds, as from (7) an (13),

x = y' + (1 - y2)/n2 < Y2 .

If n 2 is even, (9) follows from (13) . If n 2 is odd, say n 2 = 2n3 + 1, y $ n 3 ,
since n 2 1 (mod 2n 3 + 1) for n2 + 3. Hence from (13), y C n31 and
(9) holds again. Since from (12), °v2- 0a=y2 -x>0, (11) holds if
(10) holds. From (7) and (9), we get

ii n,

	

6, since
Y2 - x = (y2 - 1) In, < n2/4.

Thus (10) follows if n2

	

6, sínce

0 2
- 1 + 2y"- 2x <1 1 +n212 G n 2 - 2

is true for n 2 =- 6. But n 2 * 4, pa, 2pa, and so n 2 ? 8, hence fn is non-
decomposable .

s
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Now from lemma 4, we need only prove that if n = 2 k, pk, or 2pk,
where n

	

12, n * 13, 16, 17, 19, 23, the equation

is solvable with the conditions
n, > 0, n, > 0,

Small values for n, - 2 are

n 2 ==n,+n,

n,=8m or a 2 -1, n,*4,

n--6= 3",

	

n-30= 37 .

They give the equation 3~ - 3 f = 24, which has only the solutions '' = 3
leading to n = 33 * p k The only exceptional value n pk < 30 is 27 .

If n =- 2 (mod 3), we can take n, n - 14, or n - 38, if n >38,
unless

pa 2pa and

6, 13, 14, 22, 30, 38 and 46 •

Suppose first that n = 0 (mod 4) . Then we need only consider n = 2 k
If 2 k- 2 (mod 3), then we can take n, = 2 k- 14 or 2k- 38, if n > 38,

unless

2k - 14 = 2 .3j,

	

2k - 38 = 2,3 í •
They give 3rP - 37 = 12, which is impossible . But if n < 38, we get the
exceptionaa case n 32 •

If 2k- 1 (mod 3), then we can take n., = 2k - 22 or 2 k - 46, if
n > 46, unless

2k - 22 = 2.3",

	

2k - 46 = 2.37 .

They give also the impossible equation 3' - 3' = 12 and we get the
exceptional value n = 16 •

Suppose next n - 2 (mod 4), we can take n, = n - 6, unless n = 4,
í • e . n = 10 •

Suppose finally n is odd and so n = pk. If n - 0 (mod 3), we can take
n, = n - 6 or n -30, if n > 30, unless

n-14=3~,

	

n-38=3,.

'I hey give the -equation 3~ - 37 = 24, which has the only solution = 3
and this corresponds n = 41 . The o they exceptional values C 38 are 17,
23, 29 .

If n = 1 (mod 3), we can take n, = n - 22 or n - 13, if n > 22,
unless



Since
27-6=21, 29-14=15, 41-6=35,

and 21, 15, 35 $ 4, pa, 2pa, we can rule out the cases 27, 29 and 41 . Hence
the only exceptional values are

n = 13, 16, 17, 19, 23 and 32 .

But 32 can be excluded from the last. Write

35

	

2(30)

	

__ '35

	

2(29)

	

2

	

5) ,
f31

	

6

	

1(29) ' f32 (

	

6

	

1(29)

	

2

Then f31 has determinant 5 = 35 . 31 - 6 2 . 30, f,, has determinant
1 = 5 . 5 - 2'(35 . 30 - 62 .29) . By lemma 3, the form f,, is non-decompo-
sable. If there exists a decomposition for f32, say

J32 - h 32 h32

and one of the h's, say h32 must vanish identically if we put x 32 0, for
otherwise, there would exist a decomposition for f3, . Hence h32 ' contains
only cx3 wíth c > 1 . This is impossible, since2

On definite quadratic forms, which are not the sum of two definite .

	

1 17

n-22=3~, n-13=37 .
'They give the impossible equation 37 - 3~ = 9, and so the exceptional
values in this case are only 13, 19 .

Hence the exceptional values are

n = 13, 16, 17, 19, 23, 27, 29, 32 and 41 .

35

	

2(29)

	

2

	

5-c
6

	

1(29)

	

2

Hence f32 is non-decomposable and our lemma is proved .
It should be remarked that for n = 8 9 ), 9, 10, 11, 13 10 ), it is known

that there exist no odd non-decomposable forms with determinant unity .
It still remains to be investigated whether there exist odd non-decomposable
forms when n

	

16, 17, 19 and 23 with determinant unity .

LEMMA 10 . For every odd integer n > 176, a non-decomposable
form in n variables with determinant 2 exists such that the upper left-hand

0 ) Mordell, J. de Mathématiques, 17 (1938), 41-46. Also see Ko, Quart. J. of
Math. (Oxford), 8 (1937) 85 .

10 ) Ko, ,On the positive definite quadratic forms with determinant unity", which
may appear in Acta Arithmetica .

= 1-5c<0 .
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(n-1) -rowed principal minor of its determinant is odd and greater than
unity .

We prove first the existence of two such forms in 16k -}- 1, 22h + 1
variables respectively .

Consider first the form in 16k + 1 variables

(14) í16k+1
__ 2(15)

	

2 34 10

	

2(14) 34

	

10

	

2(14) . . .34 10

	

2(14) 34) ,
1(15) 6 1 1(14) 6 1 1(14) . . .6 1 1(14) 6 )'

where the part \ 34 1 10
1(14)

2(14) 6 / occurs k - 1 times. Denote the up-

per left - hand i - rowed minor of its determinant by A l . Then AW+1 is
the determinant of f 16k+1 .

For k =1, the form in 17 variables

f17 _
(
2(15) 1(15)

	

/
2 6 34)

is non-decomposable by lemma 3 . By lemma 1, A 15 = 16, A 16 = 17, and
A17 =34 .17 - 6 .16=2.

Suppose now that for k = m, in (14) the form í16m+1 is non-decompo-
sable and A16m = 17, A16m+, = 2 . Take k = m+I, Then A16m+2 = 10 .2-17

= 3, A16m+3 = 2 , 3-2 = 4, and so step by step, A16m+16 = 17, A16m+17 =

34, 17-62 .16=2 .

From lemma 8, on taking

g, - f,6m+1, ~D, - 2, A - 17,

g2 = 2(13)
1(13)

2 6 34), '~
21) 2 =34 .15-62 .14=6,

93 =
( 2(14)

1(14)
2

6
34) , c03 = 34 .16 - 6' . 15 = 4 ,1

	

14)

	

J

and a = 8, then g =f16.+ 17 is non-decomposable, since from lemma 3, g2, 9,
are non-decomposable. Hence J1 6k+1 is non-decomposable for any k > 0 .

Consider next the form in 22h + I variables

2(21)

	

2 24 13

	

2(20) 24 13

	

2(20) . .24 13

	

2(20) 24(15) .X2 2h+1

	

(

	

1(21) 5

	

1

	

1(20)

	

5

	

1

	

1(20) . . . 5

	

1

	

1(20)

	

5

the part (
24 1

13 1(20)
2,20)

5) occurring h-1 times . Denote the minors

corresponding to the A's above by A Í ',
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1 19

For h =1, the form in 23 variables

is non-decomposable by lemma 3 . By lemma 1, A22 ' = 23, and A23 '
24 .23-5 2 .22 = 2 . Suppose now for h = m, in (15) the form fízm+l is non
decomposable and that Azzm+1 = 23, Azzm+1= 2 . Take h = m + 1 . Then
A'22m+2 = 13 .2-23=3, Azzm+i = 2 .3--2=4, and so step by step,

fai = 12(21)
1(zt)

2
55
24)

and a = 11, then g í22m+z i is non-decomposable, since by lemma 3, g 2 , g3

are non-.decomposable . Hence f'22,,+1 is non- decomposable for any h > 0 .
Finally, we consider the form in 16k + 22h + 1 variables f",bk+22h+I =

(2(15) 2 34 10 2(14) . . . 34 10 2(14) 34 10 2(20) 24 132(20) . . . 24 13 2(2o)24 1
1

	

1(15) 6 1 1(14) . . . 6

	

1 1(14)

	

6

	

1 1(20) 5 1 1(20) . . .5

	

1 1(20)

	

J5

with k > 0, h > 0. Denote the corresponding minors now by A7'. Then

A"16k+I = A16k+I = 2, A"16k+2 = ;Á16k+2 = 10.2 - 17 = 3,

A"16k-á-3 = A i'= 4, etc ., A" 16k+22h = A '22h = 23, A"16k+22h+I =A '22h+l = 2 .

From lemma 8, on taking

g, = f16k+í,

		

0, = 2, A = 17,

4,

~̀3 - 3, a

	

8,

the form g = f '16k+22h-{-1 is non-decomposable. Then as in the proof of
the non-decomposability of f'22h-}-1, we can show that f'16k+22h+l is non ,
decomposable for any k > 0, h > 0 .

Now every integer n = 2m + 1 > 176 is of the farm 16k + 22h - i-1,
since m = 8k + 11h has a solution with h > 0, k 0 for m > 87 . Our
lemma is proved .

Azzm+zz- 23, Azzm+zi

From lemma 8, on
- 24 .23

taking

5 2 .22 2 .

g, =, f 22m-{-1, JD, = 2, A = 23,

g = /2(19) 2 241
~, = 24.21 - 5 2.20 = 4,1(19) 5 J

g3 =
/ 2(20)

1(20)
2

5
24~ ,

2
= 24.22 - 52,21 = 3,

92 -

(2(19)
1(19)

J2 5 24) ,

(2(20) 2
9, - 1(20)

24)
,
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LEMMA 11 . There exist even and odd non-decomposable forms in
less than 13k variables with determinant k + 2 .

Let r be an integer such that

(16)

	

10k > r2 > 2k + 4

	

(k > 0) .
Such integers always exist, for if we write

r 2 >2k+4 =_(r-1) 2 ,

r' G (f 2k + 4+ 1)' =2k+ 5-i - 21/2k + 4 .
Then (16) holds, if

10k > 2k + 5 -i- 2V 2k -f 4
or

	

8(8k - 11)k + 9 > 0,
which is true for all k > 1 . If k = 1, r=3 suffices .

Consider the form in r 2 - k - 2 variables

i r2-k-2 -
2(,2

-k-4)
2 r 2 - 11

1 (r2
-k-4)

	

rr

By lemma 1, its determinant is (r2 - 1) (r2-k-2) -r2 (r 2-k - 3)=k+2.
It is non- decomposable; for by lemma 3, it tuffíces to show that

r 2 -k-2>k+2,

	

2r < r 2 -k-2.

The first inequality follows from (16) . The second is true for k=1 . For
k = 2, we can take r = 4 . For k > 2, we have r 4e Suppose then the se-
cond ineqaulíty is not true, i . e . 2r > r2 - k - 2, and so

(r-1) 2 6 k+2.
Then from r 2 2k + 5, we get

2(r- 1)2 < r2 ,

which is false for r 4 . Hence fr2-k-2 is non-decomposable .
Consider next the form in (r -I-- 1) 2 - k - 2 variables with deter-

minant k + 2

f/(r

	

=(
2((r+1)2 -k--4)

	

2

	

(r-{-1) 2-
l)

.
+1 )2 -k-2

	

1 ttr+n2 -k-41 r+1

It is non-decomposable ; for by lemma 3, it suffices to show that

(r+l)'-k-2>k-}2, 2(r+1)6(r-í-1)2-k-2 .

Both of the inequalities follow from r 2 > 2k + 4 .-
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Since (r + 1)' - k - 2 < 13 k and the number of variables of one of
the forms fr 2-k-20 f(r+1)2-k-2 is even and of the other is odd, the lemma is
proved .

2. Proofs of the theorems 1, 2 and 3 .

Theorem 1 evidently follows from lemma 5 and 9 .
To prove theorem 2, we put n = m + 1 - I s, where s > 176 is an odd

integer and with the r of (16), m = r 2 -k-2 or (r+ 1) 2 - k - 2, the
choice being determined by m -- n (mod 2) . Let the form in s variables
obtained in lemma 12 be fs . Then the upper left-hand minor A,- , is odd
and > 1 . Let

u = 2 (As- , + 3) .

Then u is an integer and 0 < u - 2 < 2 A s_ 1 . Suppose first m = r2 - k-2.
Consider the form

l n =fS + 2XSX5+1 +11X5+ 1 +2X5+1 X s i z +fr2- k- 2 (Xs+2 , • • , fXs+ ,2-k-l ) f

where /r2-k _ 2 is the form obtained from lemma 11 . Denote the upper left-
hand i-rowed principal minor of fn by A, . Then

AS = 2, As+1 = 2u - A s_ 1 = 3, A5+2 = 2 .3 - 2 = 4, etc .,

A ,+r 2 -k-3 = r2 -- k - 1 , AS +r 2 -k-2 = r 2 - k ;

and so the determinant of f„ is (r2 -1) (r2 - k) - r2 (r2 - k - 1 ) = k .
From lemma 8, on taking

g 1 = fs , ~D 1 = 2, A = As-, > 3, 92 =f,2-k-29 ~D2 = k + 2,
2(r2-k-3)

	

2 rz -1)
~3=k +1, a=u-2,

'(r2-k-3)

	

r

	

,

g = f, is non-decomposable, if g, is non-decomposable . By lemma 3, 9, is
non-decomposable, if 0 3 < r 2 - k - 1, or 2k + 2 < r` and this follows
from the choice of r in lemma 11 .

Similarly, fn is non-decomposable if m = (r + 1)' - k - 2 .

Hence theorem 2 is proved .
To prove theorem 3, by theorem 1, we need only supply special re- sults for n = 6, 7, 9, 10, 11, 13, 17, 19, 23 .

93 =
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Since 6 =- - 2, 7 = -1, 23 =- - 1 (mod 8), by lemma 7, we have
a non-decomposable form for n - 6,7 11 ), and 23. For n = 9, 10, 11, 13, 17,
19, we have that by lemma 3 the forms

(15
4

2(,)

	

(i+ 1 = 9, 10, 11, 13) ;1
/24

		

2(,)

	

(i + 1 = 17,19)5

	

1
are non-decomposable .

In closing, we should like to thank Prof . Mordell for suggesting shor-
ter proofs of lemmas 2, 3 and for his kind help with the manuscript .

(Received 28 March, 1938 .)

11) These are the same forms given by Prof . Mordell. See footnote 3) .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21

