On definite quadratic forms, which are not
the sum of two definite or semi-definite forms.

By
Paul Erdés and Chao Ko (Manchester).

i
Li= ¥ e,xx (a,=a,)
=1

be a positive definile quadratic form with determinant D_and integer
coefficients a_. Call it an even form if all @, are even, an odd form if at
least one @, is odd. Then /, is called non-decomposable, if it cannot be
expressed as a sum of two non-negative quadratic forms with integer
coefficients.

Mordell ') proved that /, can always be decomposed into a sum of
five squares of linear forms with integer coefficients. Ko®) proved
that /. can be expressed as a sum of n + 3 inlegral linear squares. when
n==34,5.

When n= 6, Mordell ') proved that the form

-] 6
(1) & xf"( 2 x-)z_lexx‘zxle
i=lI =1
of determinant 3 is non-decomposable; and Ko *) proved that (1) is the only
non-decomposable form in six variables.

1) Mordell, Quart. J, of Math. [Oxford) 1 (1930), 276—88.
%) Ko, Quart. J. of Math, (Oxford], 8 [1937), 81—98,

") Mordell, Annals of Math, 38 [1937], 751—757,

‘] May appear in Acin Arithmelica.
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When n=1. 8, Mordell ') proved that the forms

n n
2 xﬁ*"[: > I,)E—le.tz—Exng (n=18)

=1 i=1

with determinant D, =2, D, =1 are non-decomposable.

In the present paper, we shall prove the following theorems:

THEOREM 1. When D_ =1, there exists an odd non-decomposable
form. if n = 12. except possibly for 13, 16, 17, 19, 23; and an even non-de-
composable form for all n =0 (mod 8).

Hitherto the only method known for finding forms with D =1 for
n = 8 was that due to Minkowski ©).

THEOREM 2. For every k> 0 and n > 13k + 176, there exists a non-
decomposable form in n variables with D_=k.

THEOREM 3. There exist non-decomposable forms for every n == 5.

From theorem 1, we can deduce that the class number A _ of positive
definite quadratic forms with D =1 is greater than 2" for large n But
Magnus ") proved that the mass of the principal genus is greater than
n™{l—t)/4 for n > n,, where e=¢(n,) is a small positive number, and so,
as Dr. Mahler points out, it follows that A, = n"* (1 —¢)/4 for n > n,.

Any quadratic form can be reduced by a unimodular transformation,
1, e, integer coefficients and determinant unity, to the form

n n—1
Nt == 2N bxx,., -
i=1 i=1

This and its determinant may be denoted by

E O g a.,) and |a, a, i a,
"’l b: LI b’rl—i b| b._. v bn_|
respectively. [f, however, say ay=a,=...a,=c and b,=b,=
= p,_,—d. we may write (u, Cin—1) ] with obviously similar
[n —32)
extensions. l

1. Seme lemmas.

LEMMA 1. The determinant of order n

%} Gesammelte Abhandlungen von H, Minkowski, 1, [1909), 77.
9} Magnus, Math. Annalen, 114 [1937), 465—475.
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d, = | %m —nt+1.
11r|—1.f

It is evident that d, =2 and d.=3. Suppose now d_ =m + 1 for
all m < n, then

di=2diy —dpz=2n—(n —1) =n + L
LEMMA 2. The only squares which can be subtracted from the form

fx) = 2 Z o+ 2 % & n=3),

=1 fr=11
so that the remaining form is non-negative, are x?, (x; +xq)? (i=1,.
= 2
n—1), and x%
Since we can write

n—1

f =24 3 atxu) + a5

=1

the unimodular transformation

X = Yo X s Xty — (_I}Jrin'!l ([ = Yol 53
carries f[x) into

o = Xyt (X v

= i=1

If Fly) = fiy) — (L)) Liy) = ____‘I,‘l a

is non-negative, then it is evident that a;, can be only £1 or 0 since

F(0,...,0,1,0,...,0) = 2 — a = 0.

I. Suppose first that one of the a' s is zero, say a, = 0. Without loss
of generality, we can assume that ¢ .= * 1. Then

n—I1 n—1

F(a,.a,, a,_..—al)—2+2 a,1+(}j a)— 1+ 22
=2 =
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n—l
{ 1 ILé E a‘f =< n:
=2
if at least two of the @;, ..., a, , are not zero. Hence we need only consider
either a,.—=..,=ga _, = 0, and then L(y) =y,, or only one of these a's

does not vanish, say a, == 0. But then F(y) is indeflinite, since as n > 3,
F(2a, 24, —a,—a,,0,...,00) = 2+ 2+ 1+1+ 22— 42 <0

II. Suppose next that none of the a's are zero. If two of them have
different sings. say a, = — a,, then

Flajay.coyap) =n+ (2 alf —nt<€(n -2 +n—nt<0.
i=3

From L and II, it follows that F(y) is non-negative, if and only if

I

L(y)=y, (i=1,....n),or X y. This clearly proves the lemma.

i=1

LEMMA 3. The form
n—1

flx) = mxf+25x,x,+ 2 ggxf-%z g!g:m:,_“

with determinant D, <n, where o> 0, = 0 are integers salisfying the
condilions:

B >a>(1 — 1/n)f? 28 < p,

is positive definite and non-decomposable.
By lemma 1, f(x) is positive definite, since its determinant is

Di=na —(n—=1 =0,

and clearly all its principal minors are positive.
First, we shall show that nondecomposition of f[x) involving a linear
square exists. As in lemma 2, we can transform f (x) into

n n
fly) = oy} + 28y, + Zz 2+ (D

i=2
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By lemma 2, it follows that the only squares which need be considered are
“'} (al:"'l}nl a, + 0, [2] {al}rl +:l"t]ar [3} (a,y, oy }"]2 (t=3,...,n) and

) (a, +2, 9%
=2

The case (1) is ruled out, since D — nﬂf‘i{}. For the cases (3] and

{4), we need consider only the square (a.y, + ¥.)°. since f(y) is symmetrical
in ¥, ...¥, and the transformation

n

T: e >—Z v w>y G=1245....n
=2

permiutes 3’3 and (X v)2
i—2
Consider first the form

F, =/ —(ay +}':J=

=(a—ad) yi+2(—a)yy, + 2 nyZ’ v
i=3 =2

The transformation

yj+ _2}"[: }"j'i"}'j' {j=1I3!4!F“'pn}

i=1

carries F. into

= (¢ —ally? —2(B—a,) y,t‘? )+ s My
2 r-—2

= z(}*;— (E—a) y)*+ (s —a— (n— 1)(F — )y
=2

The maximum of the coefficients of y?
A=a—al—(n—1)(¢ —a)

tor different a, occurs when @, = (n—1) g/n. Since 0<=§/n<1, we have
for @, =, E—1, respectively,
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A=3—p<0 and A=a—[4+28—-n<0,

‘p0 that F, is indefinite. This settles the case (2).
' Consider next the form

Fs=/@)—(a,y +y)

=(a—a)yi+2yy, Tyt E?H (E ¥ —2a,y.ys
=4 =1

The transformation T carries F, into

Fy '{m—ﬂ1]?f+23}'1:-':"'2*1;1'1f2 y.‘]+ Z ?1
=2 =2

= E h’r+ al?l}l + b’l + $'+ ﬂu}?ﬂE‘H-" = ﬂ: = {;’ + ﬂ;}* — (ﬂ — 2)“?})’?4
=3

The maximum value of the coefficient of y?
A' =0 —al—(f+a) —(n—2)a]

is reached when a, = — fi/n. Since — 1< —j/n <0, we have, for a, =0, 1,
respectively,

A'=a—f<0 and A'=a—+2i—n=<0,
F, is indefinite and cases (3) and [4) are also sellled.
Suppose now there is a decompaosition
flx)=f'lx) + ["lx).

No term x? (i =2) can occur in either f'(x) or f"(x) for then a square can
be taken out of f(x). Hence we can assume f'(x), say, has a term 2x)
Then f'(x) must also contain 2x,_ x, for otherwise f"(x) assumes negntwe
values by choice of x, . Thmflx} contains also 2x?  , for otherwise f"(x)
will assume negative values by chivice of x.-i. Proceeding in this way, f/'(x)
will contain all the terms of f(x) involving x,x . ..., x. Hence
[“(x) = ax}, and so a square x] can be taken out from f(x), which con-
tradicts what we hawe proved.

LEMMA 4. If n==2" p», 2p=, where p is an odd prime and « is a po-
sitive integer, then there exists an odd non-decomposable form in n variables
with determinant unity. '

Consider the form
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—{* 2u-n )
/4 ( v 1t

in n variables. It is easy to calculate by using lemma 1 that its determinant
has the value

s =nx— (n—1)y%
Putting D, = 1, we have to solve the congruence
2) S el m)
Since n== 2%, p%, 2p* we can write
n=a.b, [a b)=1, a>2, and b>2.
Suppose ¥,, ¥. are the solutions of the congruences:
y,=—1 (mod a), y,=1 (mod b), 0=y, <n;
¥, =1 [mod a), y,=—1 (mt;}db}. 0<y,<n.
Both y, and v. satisfy the congruence (2) and since
¥, Fy,=0 (mod n), 0<<y,<n, 0<y,<n,

we have

¥+ w=n

Hence one of the y,, y. is less than { nand we take this value to be our y,
which satisfies the inequality 2y < n.

From D =1, we can oblain the inequalities y*=> x> (1 —1/n)y%
Hence the form f, satisfies all the conditions of lemma 3 and is non-de-

composable.
f,is an odd form if x={((n—1)y*+1)/n is odd x is evidently odd

if n is odd, If n iz even, we write
x =y — (¥ —1}/n.
Then y must be odd and from the congruences
y=+1 (mod a), y=F1 (mod b), (a, b)=1, ab=n,

it is clear that if @ is even, then b is odd, y & 1 is even and so (¥ —1)in
is even and so x is odd.
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LEMMA 5. For any n=8m, there exisis an even non-decomposable
torm in n variables with determinant unity.

Consider the form

(Sm 2m 2(8m—2)

Sy = dm—1  18m—2)

in Bm variables, By lemma 1. the right lower corner (8m — 1)-rowed minor
or the determinant Dy, of f(x) has the value

2m(8m—1) — [8m — 2) = 16m*— 10m + 2> 0.
and so
Dg,, = 8m(l6m* —10m + 2) — (4m —1)*(8m —1) = 1.

Hence it is clear that f{x) is an even positive definite quadratic form with
determinant unity.

To prove the non-decompesability of /{x). we first show that no square
can be taken out from f (x].

Let Q be the matrix of f(x), then the adjoint form of f(x). say F. has
matrix Q' . Since

] RRT'0=Q,
F~.flx), and so F is also even. Hence all the (8m — 1)-rowed minors of
forms equivalent tof (x) are even. Suppose now a square L' can be taken out
from f(x). A unimodular transformation carries f (x) into
Am

fm= 3 @y ¥ (a,=a,)
=i

and L= x,. Then the determinant of f{x) —x1is

g, —1 @, ..,0

" T 1iEm
a o TR
21 22 2.8m ] el
LR S s Faw =2 1 A'
Ol Ogaiia ™« Do

where -4 is the Im:inu'r of the element a,;, in the determinant of f(x). Since
A is even, 1 — 4 <0 and sof [x) — x? is indefinite.
Suppose nowf (x) is decomposable, say

f{x} =f:{x] +Jr.{x]
. By the same argument used in the last part of the proof of lemma 3, one
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of thef Ix), £, (x), say f, (x), can at most contain the variables x, and
x,. Since all binary non-negative forms can be expressed as a sum of
squares of linear forms, a square can be taken out from f(x). This con-
tradicts what we have just proved '),

LEMMA 6. If there exists an even positive form in n varigbles with
determinant unity, then n is divisible by 8.

Suppose there exists an even form f with determinant D =1. Then
by a unimodular transformation, we can change f, into

(2a, 2a, 2a, .
b b

A simple determinant calculation shows that D _is even if n is odd. Hence
n is even, Let the left hand corner principal minors of D_ be 2D, D., 2D,
D, ...,2D_ ,, and write D=1, then

1 1 i vl a—1

(3) 2D, =2a,D,=4a,D, — D, b},... B =D =D, b5 s
DJ& = 4ﬂ2l 'D?I'J--I T ﬂlr—x bizl'—t e i Dﬂ i 4aﬂ l..".:’J'l—1 i, Dn—ﬂ bgn—'! I

From these relations, it is easy to see thal (D, D) D, =1 and so
(B,8,..=1 for =1 .y #— L. Since

B RN R
D=1 b, 8, by...b

1 3+5° Tn=1

=b,b,...b _, (mod 2),

all the b, ., are odd. By taking congruences modulus 4 in (3), we have
D,=—bi=—1, D,=—D,bi=1 (mod 4)
It follows, by induction, that in general
D, .=—1 and D, =1 (mod 4).
Hence the D, are odd and n = 0 (mod 4), say n=4m. Write D, pi—

29D, , where D, is odd. It is evident from the last relation of (3),
that the D, D, . satisfy the relation

"] This argument shows that the ‘even positive definite lorm with determi-
nant unity

Bm Hm
hix)= & x2 d( E ayt —2ax, — 2xyxg + 2m—1)xd
AT TR =1 Bm

given by Korkine and Zolotarelf in Mathematische Annalen, 6, 1873, p, 366—389 [brought
to our nelice by prof. L. J. Mordell) is non-decomposable. It is probable that #(x) is
equivalent to our f{x) for the same m. .
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o £ TR ¢ A I ¥

- the symbol being that of quadralic residuacily. Since —D, ., =1 (mod 4),
and D, . .=—1 (mod B), when{, , =0, we have

L= [DH 1.' 4m_1] {Dh erim—E]
From the relation D,, , =a, D, .—D,
B S Dy )

T [2“'"'_4 ‘Dﬁm-mﬂ} E — 1} % ‘B’lm—3+ ” (D m—!'lr 1m—g
= (24n—3iD, _J(—1) T PamstV_p p 3,

B _of (3),

since again from (3). D, ,=4e, ,D, .—D, . bi . Hence

=
1= (23D, )~ PtV P =D D, )
= —(24m—3/D, ;) (2%-3(D, D, /D, _*J
From the relation 44, ,D, , — D, b} ;= D, . we have, when
tyns = 0, since b, ,is odd, D, . +D, , = 0 (mod 8). Hence
(2/D, _,) =(2/D,_ ) and so
(24m-3/D, ) (24m—3/D . )= 1.
Hence
= 4B O,
= (Dyp_stDyyg) = — 1.
Continuing this process, we gdet
s Mot el
Hence
& B 5
and so 4m — 8i — 450, or n is divisible by 8.
LEMMA 7. The positive definife forms:

/ 4 (Em 2m 2[9,..—3;)
) S T T

w (Sm 2m 24, _4])
I T

s ,
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in 8m—1 and 8m —2 variables with determinants 2 and 3. respectively,
are non-decomposable, >

Let us first consider the form f,  , From the argument used in the
last parl of the proof of lemma 5, it sulfices to prove that no square can
be subtracted from £, , Suppose f, ,— L* is a non-negative quadratic
form with integer coelficients. where L is a linear form in x,. ..., xg,._,with
integer coelficients having no common factor. By an unimodular transfor-
mation, we can write L — x,. and then

Bm—2
Tl = 2 Oy g (2, = a)),
S E= g |

where f, . — x%is a non-negative form. Let the cofactor of a,;, in the de-
lerminant of /; _,be 4,: then the determinant of f;, ,—a?is 3— 4
and ist not negative. Since the adjoinl form of an even form in an even num-
ber of variables is even®), .4,,—2. Consider now the positive even de-
fimite form

6 6 Bm—2
Soups =883+ 6x, 2,428 A2V v+ ¥ a2 w0
i=2 =2 Li=1

in Bm + 4 variables. On bearing in mind the method of lemma 1. the lower
right corner. say 1. r. c.. (8m—1)-rowed minor of the determinant of £, |
has the value 2.3 —2=4: the 1. r. ¢. Bm-rowed minor is 2.4 —3 =25, the
1 e r. (Bm - 1)-rowed minor is 2.5—4=6, the 1 r. ¢c. (Bm + 2)-rowed
minor is 2, 6—5=17, the L. r. ¢. (8m 4 3)-rowed minor is 2.7 —6=8
and so the determinant of /,  , is8.8—3".7=1, which contradicts lem-
ma 6.

Next we prove that no square can be taken out from f,  and hence
fom —118 nON-decomposable. 1f f, | — L* is non-negative, then L cannot con-
lain a term involving x, (1< i < 8m — 2), for otherwise, by putting x, =0,
we would get a decomposition of f, , Hence L=x, , But f, |, —x% _ is
indefinite, since the determinant of f, , —#  is 2— 3 <0. This comple-
tes the proof,

LEMMA 8. Let the positive definite quadratic forms:

B fn(xieenz )y =S FEagareix )
g="bs%  +2x + g,

1 X
having determinants D, D,, D, respectively, be non-decomposable. Denote

&) Bachmann, Zahlentheorie, vol. 4, part 1, 444
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by A the value of the upper left-hand corner principal (m — 1)-rowed minor
of D, If there exists a positive definite guadratic form of determinant

DD D,
g=d taxl T2r g T

m>mepe1
where a is an integer and 0 < a < A|D,, then g is non-decomposable.
Suppose g has a decomposition

(4) g=h+h.

If one of the h's has a term involving x; (i=1, ..., m), it will contain all
the terms of g, for otherwise we would get a decomposition of g, by
putting x ., =...= x, =0. Similarly, if one of the k's, say b, has a term
involving x; (i =m + 2, ..., n), it contains all the terms of g.. Then A must
contain the term 2x _ T A for otherwise, A’ will assume negative values
by choice of x . ,. Then h contains also a term b'x? | with b > 0, for other-
wise, i will assume negative values by choice of x . Next b" == b, for if
b <b, on putting x, =.., =2 =0,

h= gz'i'Zer_'_lxm e = e g
This is indefinite, since g, is non-decomposable. Hence % contains g,. Hence
we may suppose that either /i contains both g, and g,. or k contains g, and i’
contains g,

In the first case, h' can only contain the terms or part of the terms of
g— g, + g.) =axt. T & x ... Then "= cx, ., with 0 < ¢ = g, since
it A" contains the 2x_x_.,, A" will assume negative values by choice
of .'1.‘m. Hence

— 2
h=g—exd i

Since the cofactor of the coefficients of x? 4y in the determinant D of g, is
D,D,, the determinant of his D — ¢ D, D,. By hypothesis, D — D, D, < 0,
h is indefinite.

In the second case, h must contain the term 2x_x_ 1y for otherwise &'
will assume negative values by choice of x_, Then h contains also a lerm
e'x? ¢ =0, for otherwise h will assume negative values by choiceof x_ e
Also

h=g,12x_ Xoiy + c'x? o b =g, -I-u'.ri__r_”

since A’ contains g, Hence a=¢+ d and so ¢ = a for d cannot be nega-
tive, as g, is indecomposable. It is easy to see that the determinant of h is
¢" D,— A. By hypothesis, ¢’ D, =a D, = 4, and so h is indefinite. Hence (4)
is impossible and the lemma is proved.
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LEMMA 9. For every n =12, except possibly for n=—13, 16, 17, 19,
23, there exists an odd non-decomposable quadratic form with determinant
iy,

Suppose n + 2 can be expressed as the sum of two positive integers
ny. n;, where n, =8m or a*— 1, and n, =4, p°, 2p°, p being an odd prime
and o an integer. Let the form p

i5) [ a, a, a, : vie @5 ; um_,)
3 $as - &

in n, — 1 variables with determinant 2, conlaining a minor
(6) a, a, a, P S a,,._z‘
| b, b, b, coay b, s

be non-decomposable. Such forms always exist, for if n, = 8m, we can by
lemma 7, take the form

[ 8m 2m zlﬂr-—il)
4m—1

I{Sm =3

and if n, = a*— 1, by lemma 3, the form

( a¥—] 2“,'_2] ]
a s[n.— e

Consider now the odd form:

¥ = a, a, a, cee @, a s 3 I ;)
B ht bz b‘a bﬂ4—3 1 1rN '_3] ,!e' L |
in n variables with x, y satisfying the relation
(7) mx— (m—1)y*=1.
From [5) and (6),
ay a, ay see @, o o— ! =32-3=3
b, b, b b, _, ! '
and so as in lemma 1,
T T . Grima) 3 200,—4) | _ —
| - T bn,—2 1 1a—4) | E
oy sve Op_ 3 Ty 3 2(r—3) ‘ = n
Jirne il bn-—2 1 Yn—3) i

and the determinant of £ is mx — (. — 1)y = 1. From lemma 8, on taking
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— a ter dn—32 an—l - =
Sl
—_ [2tny—4) x 2in,—3) 2 .x)
g ( 1in,—4) y J e= 1, &= ( 1in,—3) ¥y !
— | 24ny—4) R ‘ 1 ‘ 2(ns—3) 2 x ‘
D, ‘ lin,—4) ¥ - D, ln—t) ¥ :

£, is non-decomposable if g,, g, are non-decomposable. From lemma 3, we
need only show that

(8) Y,

@ 2y < ny—2,
the determinant of order n, — 2,

(10) D, <n,—2,
and the determinant of order n, — 1

(11) D, <n,—1.

By lemma 1 and (7],

(12) D=n—dx —(n,—3IW'=1— 2= +
8, =p;= PJr—in=PPp =1 <= x- .
We now solve (7). Since n, -4, p*, 2p%
Y*=1 (mod n,)
has a solution ¥ satisfying the inequalities
(13) 1=<Y< 2.

Then taking y =¥ in (7), we have a solution (x, y). Then (8) evidently
holds, as from (7) and (13),

x =y 4 (1 = yl)n <)
If n, is even, (9) follows from (13). If n, is odd, say n, =2n, +1. y¥Fn,
since n? == 1 (mod 2n, + 1) for n, & 3. Hence from {13] v < n—1 and
(9) holds again. Since from (12), D,—D,=y*—=x >0, (11) holds if
[10) holds. From (7] and (9), we get

¥ —x = (*— 1) /n, < n,/4
Thus (10) follows i n, = 6, since

D.=1+2y"—2x<1+4nf2 <n, —2

is true for n; =6. But n,%=4, p* 2p% and so n, = 8, hence f» is non-
decomposable,
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Now from lemma 4, we need only prove that if n=2% p* or 2p%,
where n = 12, n=k 13, 16, 17, 19, 23, the equation

n—2=n,-+n
is solvable with the condilions n,=8m or a'—1, n.54, p* 2p* and
n=0n=0
Small values for n, — 2 are

6, 13, 14, 22, 30, 38 and 46.

Suppose first that n = 0 (mod 4). Then we need only consider n—2"
If 24=2 (mod 3), then we can take n.=— 2t— 14 or 2¢— 38, if n > 38.
unless

2k — 14 = 238 24— 38/ = 23"
They give 3% —37=12, which is impossible. But if n < 38. we get the
exceptional case n=32,

If 2*=1 (mod 3), then we can take n.=—2¢—22 or 2¢t—46, il
n > 46, unless

2k — 22 = 237 2% — 46 = 2.37,

They give also the impossible equation 3" —3" =12 and we get the
exceptional value n=16,

Suppose next n = 2 [(mod 4). we can take n,—=n—6, unless n.=4,
i, e.n=10,

Suppose finally n is odd and so n=p*. lfn = 0 (mod 3), we can take
n.—n—6 or n—30, if > 30, unless

A -6 = 3% n-— 30 = 3%,

They give the equation 3° — 3° =24, which has only the solutions & = 3
leading to n =33 3= p* The only exceptional value n=p* < 30 is 27.

If n= 2 [mod 3), we can take n.—n—14, or n — 38, if n =38
unless '

A — 14 =13 n— 38 = 31,

They give the equation 3F — 37 —24, which has the only solution = 3
and this corresponds n=41. The other exceptional values < 38 are 17,
23, 29.

If n=1 (mod 3), we can take n.=n—22 or n—13, if n> 22,
unless
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n—22=3% n_13=3",

They give the impossible equation 3'—3% =9, and so the exceptional
values in this case are only 13, 19.
Hence the exceptional values are

n=13, 16, 17, 19, 23, 27, 29, 32 and 41.
Since
271—6=21, 29— 14=15 41 —6=235,

and 21, 15, 35==4, p=, 2p%, we can rule out the cases 27, 29 and 41. Hence
the only exceplional values are

n=—13, 16, 17, 19, 23 and 32.
But 32 can be excluded from the last. Write

f31=(35 y 230) )| fn:(35 J 2(29) 2 5

1iz9) 129} 2

Then f,, has determinant 5=35.31 —6°.30, f,, has determinant
1=5.5—2%(35,30—6".29), By lemma 3, the form [, is non-decompo-
sable, If there exists a decomposition for f,, say

Ja=hy+hy

and one of the A's. say h,, must vanish identically if we put x,,=0, for
otherwise, there would exist a decomposition for f,. Hence h,." contains
only ex?, with ¢=1. This is impossible, since

35 2(29) 2 L) R
6 1(29) 2 = el

Hence f,, is non-decomposable and our lemma is proved.

It should be remarked that for n=8"). 9, 10, 11, 13'°). it is known
that there exist no odd non-decomposable forms with determinant unity.
It still remains to be investigated whether there exist odd non-decomposable
forms when n=16, 17, 19 and 23 with determinant unity.

LEMMA 10. For every odd integer n> 176, a non-decomposable
form in n variables with determinant 2 exists such that the upper left-hand

"} Mordell, J. de Mathématiques, 17 (1938), 41—i6. Also see Ko, Quart, J. of
Math, { Oxford], B (1937) 85,

1) Ko, .,On the positive definile quadratic forms with determinant uwnity”, which
may appesr in Acta Arithmatica,
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[n—1) ~rowed principal minor of its determinant is odd and grealer than
unity.
We prove first the existence of two such forms in 16k + 1, 225 + 1
variables respectively.
Consider first the form in 16k | 1 variables:
_ {2115y 2 34 10 2014 34 10 2(4)...34 10 2014 34
(14 S = 1) 6 1 149 6 1 1(14)...6 1 114 6 ]

where the part { h 1 o 1“4]2”4’

per left - hand i- rowed minor of its determinant by A. Then A is

6) oceurs kB —1 times. Denote the up-

the determinant of figri.
For k=1, the form in 17 variables

Joo= 2(15) 2 34
1 1159 6

is non-decomposable by lemma 3. By lemma 1, 4,5 = 16, ;s = 17, and
A;3=34.171—6.16=2.

Suppose now that for B =m, in (14) the form fisn1 15 non-decompo-
gable and Almz 17, 4‘41_ﬁm+l =2, Take k=m+1, Then A1ﬁm+z=lﬂ-2—17
=3, Aum+3=2.3—2=4, and so step by step, Auatsc =17, Algmtir =
34.17—6%.16=2.

From lemma 8, on taking

g, =fu.m+|. .'EI.'-" =2 A= 17,

— (2113) 2 ".-i) o —§?. 14—
g, ( s 6 ) D=3.15—6°.14=6,

— (2(14) 2 34 = —f 4E=
£ ( WLl ). D,=34.16—6%.15=4,

and a =8, then g =fi4nt17 is non-decomposable, since from lemma 3. g, §:
are non-decomposable. Hence /441 is non-decomposable for any £ > 0.

Consider next the form in 22k + 1 variables

15) 7 =(2:2u 2 24 13 2oy 24 13 200...24 13 2(20) 24
kL Ign5 1 1oy 5 1 1(20...5 1 10 5

the part (241 131{2[}} 2.20) 5) occurring fi—1 times. Denote the minors

corresponding to the A's above by 4.
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For A= 1, the form in 23 variables

Ja= (Zuu n 2 534}

is non-decomposable by lemma 3. By lemma 1, 4y’ = 23, and Ay’ =
24.23—5%.22 =2. Suppose now for h=m, in (15) the form /5.1 is non
‘decomposable and that A, = 23 A, =i Take h=m+1. Then
A =13.2—23=3, A4}, .= 2.3 - 2=4, and so step by step,
A =23 Ay =24.23— 84, 22=2.

From lemma B, on taking
g =Famp, D, =2 4 =23,
6= (9 Ly ¥ 5 ) D= 202 — 5120 = 4

= (220 2 A4 ¥ - o
a=" M9 -un-—s=3

and a= 11, then g=f;, .,, is non-decomposable, since by lemma 3, g, g,
are non-decomposable. Hence f°,, ., is non- decomposable for any h> 0.
Finally, we consider the form in 16k + 22A + 1 variables f”,, ., ., =

(2[15} 23410 2(14)...34 10 2(14) 3410 2(20)24 13 2(20)...24 13 2(20) 24)

f(5i6 1 1(14)... 6 1 Lite) 6 1 12005 1 14200 ...5 1 1(2;0 5

with =0, h> 0. Denote the corresponding minors now by 4. Then
A" 16k+1 = Aokt = 2, A" 16642 = A1eb42 = 102 — 17 = 3,

A" 16043 = Ay = 4, etc., A 16k+228 = A" 228 = 23, A" 16422041 =A"228--1= 2.

From lemma 8, on taking

g=fisnt1, D =24=13,
2

i = ( (19) 2524]‘ D, -4

1i19)
{220 2 24
& = ( 1200 )

the form £=f’tﬂ+m+l is non-decomposable. Then as in the prool of
the non-decomposability of £, we can show that f o i 51 ¢ is non-
decomposable for any >0, A > 0.

Now every integer n==2m + 1>> 176 is of the form 16k 4 22h +1,
since m=8k 4 114 has a solution with h= 0, # =0 for m> 87, Our
lemma is proved.

. =3 ac=R
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LEMMA 11. There exist even and odd non-decomposable forms in
less than 13k variables with determinant k - 2.
Let r be an integer such that

(16) 10k >r*> 2k + 4 (k > 0).
Such integers always exist, for if we write
r>2k 44 = (r—1),

P<(2k+a+ 1) =2k + 5+ 272k + 4
Then (16) holds, if
10k =2k + 5+ 212k + 4
or B8R —11)k +9>0,
which is true for all 2 > 1. If B=1. r =3 suffices.

Consider the form in r® — & — 2 variables

_ {2 2 = 1)

Fropa= ( 10y T
By lemma 1, its determinant is (;*—1) (P—k—2) —r(r*—k — J)=kt+2
It is non-decomposable; for by lemma 3, it tuffices to show that
rfr—k—2=>kF+2 Zresr—hk—2
The first inequality follows from (16). The second is true for F=1. For
k=2, we can take r =4. For k> 2, we have r = 4. Suppose then the se-
cond ineqaulity is not true, i. e. 2r>r*—k —2, and so
fr—1)*< R+ 2
Then from r* = 2k + 5, we get
2{r—1)* <7,

which is false for r =4. Hence [, , , is non-decomposable.
Consider next the form in (r + 1} — &k —2 variables with deter-
minant & + 2

el 2“'_'_“’ —§—4) 2 [r+1}=—-1
Jirt1y ——2 { Lipsid o FH ]

It is non-decomposable; for by lemma 3, it suffices to show that
(F 1) —k—2>k+2,  2(rt1)<(r+1f—k—2.
Both of the inequalities follow from r* > 2k + 4.-
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Since (r+ 1)* —%k—2 <13 k and the number of variables of one of
the forms 7= | ., f,1.9_, ;15 even and of the other is odd, the lemma is
proved.

2. Proofs of the theorems 1, 2 and 3.

Theorem 1 evidently follows from lemma 5 and 9.

To prove theorem 2, we put n—=m + 1 + s, where 5 > 176 is an odd
integer and with the r of (16), m=¢r¥—%k—2 or (r - 1)*—k —2, the
choice being determined by m = n (mod 2). Let the form in s variables
obtained in lemma 12 be f,. Then the upper lefi-hand minor 4 is odd
and = 1, Let

=44 . +3)

Then u is an integer and 0 <u—2<} .4 _ . Suppose first m=r'—k—2.
Consider the form

Tl i - - M - S e Fal ':x:~|-:' o I-r’-t—l}r

where /. , , is the form obtained from lemma 11. Denote the upper left-
hand i-rowed principal minor of /, by A. Then

A,=2,4,=2—A4, =3 4,,,=23—2=4, elc,
—=p—h-1,4

My =yl —Fk

str T —k—3 afr 3 —k—3

and so the determinant of f, is (r2—1) (P2 —k) — (P —k—1)=F.

From lemma 8, on taking
£ ="f" ml = 2" A= A.I-—I ;3l Ei :.fp'-‘_.knlf E}z =k +2;

=
& i) D,=k+l,a=u—2

g, = 2[*’—’:—31
TR L '

g = f, is non-decomposable, if g, is non-decomposable. By lemma 3, g, is
non-decomposable. if D, <+*—k— 1. or 2k +2<r* and this follows
from the choice of r in lemma 11.

Similarly, /, is non-decomposable if m=(r - 1)* —k —2.

Hence theorem 2 is proved.

To prove theorem 3, by theorem 1, we need only supply special re-
sults for n=6, 7, 9, 10, 11, 13, 17, 19, 23.
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Since 6 = —2, 7 = —1, 23 = —1 (mod 8), by lemga 7, we have

a non-decomposable form for n=67""), and 23. For n=29, 10, 11, 13, 17,
19, we have that by lemma 3 the forms

15, 2 e ;

(2 mlm) (+1=9,10, 11, 13);

[2‘5 2 ‘m) (+1=17,19)

are non-decomposable.
In closing, we should like to thank Prof. Mordell for suggesting shor-
ter proofs of lemmas 2, 3 and for his kind help with the manuscript.

[Received 28 March, 1938,)

1) These are the same forms given by Prol. Mordell. See footnote 9}
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