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Ix a previous paper* I proved that for an infinity of n the number
of solutions of the equation

n = (p—1)(g—1)(r—1) (p.q,rprimes)

is greater than (logn)s. The proof was elementary and was based
on the fact that the normal number of prime factors of (p—1) is
loglog n.t But then I was unable to prove even that the number
of solutions of # = (p—1)(g—1) is unbounded. In this paper T shall
prove that, for an infinity of #, the number of solutions of the equa-
tion n = (p—1)(g—1) is greater than exp{,/(logn)—e}.

The proof will be shorter than that of (I), but it will not be
elementary, and will be very similar to the argument used in my
paper ‘On the representation of an integer as the sum of & kth
powers’. ]

Let p; be sufficiently large, 4 = p, p,...p) (Py, Pys.... Py cOnsecutive
PrImes).  (log A)2 < py < (log Apy.a)? < 4llog A (1

(since by Tschebischeff’s theorem p) ,; << 2p) << 4), and m = [eP1]+1.
We evidently have exp,/(logm) > A.
We estimate the number of solutions S of the congruence

(p—1)(¢—1) = 0 (mod 4)
with P,q < m.
We write A = BC(' and denote by Sz the number of solutions of
(p—1)(g—1) = 0 (mod 4), p—1 =0 (modB), ¢—1 = 0 (mod ()
with (¢g—1, B) =1, P, ¢ < m.

First we estimate Sg.

* See above, pp. 16-19. I shall refer to this paper as (I).
t P. Exdds, Quart. J. of Math. (Oxford), 6 (1935), 205-13.
i P. Erdos, J. of London Math. Soe. 11 (1936), 133—6.
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From a result of Titchmarsh’s* it follows that, if ¥ << A4, with the
possible exception of a single y, the number of primes p such that

p =1 (mody), p<E<m
is greater than }m/{¢(y)log m}.
Hence, with the possible exception of a single B
[B < A < exp/(logm)],

the number of primes not exceeding m for which p—1 = 0 (mod B)
is greater than }m/{¢(B)logm}. Similarly, with the possible excep-
tion of a single ', the number of primes ¢ not exceeding m for which

¢g—1=0 (mod () and (g—1,B) =1

is greater than WTEHQ?_?%_ Z aw(m, p; C, 1),
il B

where =(m,p; C, 1) denotes the number of primes not exceeding m
and congruent to unity to modulus p, C. But, since p; C < 4 < m¢,
it follows from Brun’s method that

cym . "
m(m,p; 0, 1) < 35, Olozm (¢’s denoting absolute constants).
Hence z wim, p; C,1) < z 5 Ollogm O)logm

il B
¢y Am e Cy A
qS(O logm(p,—1) ~ $(C)(log 4)2log m’
but, from (1), (log 4)** << 4 and so A < log 4. Thus

cym m

< #(C)log Alogm = 4¢(C)logm’

w(m, Pi C: ])
B

Hence the number of primes ¢ less than s and such that
g—1=0(modC), (g—1,B)=

* B. C. Titchmarsh, Rendi. Circ. Mat. Palermo, 54 (1930), 414-29. The
result states (p. 424) that, if &k is any integer not exceeding exp /(log z) one
value of k possibly excluded, and ! is a fixed number prime to k, then the
number of primes not exceeding x and prime to I to modulus k equals

1 ; d
-‘-ﬁ(k}J loguu + Oz exp[ —ecy/(log x)).
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is, with one possible exception, greater than

wm
$(C)dlogm’
Hence, with the possible exception of two B’s,
,m2
% >S9 logm
We evidently have 8 >BZA Sg,

since the same ¢g—1 cannot occur for different B’s.

(22— 2)m2 2y
Broes e 84(4)(logm)? ~ 164 (logm)*’
But the integers of the form (p—1)(¢g—1) with p, ¢ less than m are
evidently less than m2. Hence we may find n (< m?* a multiple of
A for which the equationn = (p— 1)(g— 1) has more than 24/16(log m)*
solutions.

But

logd |
3loglog A’
for all prime factors of A4 are less than (log A)® since, by (1),
p, < 4(log 4)2 and the product of primes in the interval

(4(log AY, (log A)%)

is greater than A. This fact follows from the prime-number theorem
but may be deduced by elementary methods too.

Thus, since logm < 2p; < 8(log 4)%, we finally have

_logAd
24 2310glog.:l C3IOgA I,.
16(log m)? = 16.64(log 4)* exP(loglogA) > exp{y/(logm)—j.

Hence the result.

By a quite different elementary method I obtained the following
result. Let C be sufficiently large and p, < p, < ... < p, < n any
set of primes such that

Cnloglogn
(log )

then the produets (p,—1)(p,—1) cannot be all different.



