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Here (7) follows from (b); (8) from (i) of the lemma and (c¢); (9) from (5)
and (c¢); and (10) from (6) and (c).
Finally, making e tend to zero and using property (d) again, we have

M (¢) < [0, €.
Hence the result of the theorem.

In conclusion, I may point out that Theorem IT may be generalized by
a weakening of the hypothesis (d).

(1) In the first place, continuity of [a, B], with respect to the pair of
variables a, B may be replaced by upper semi-continuity. This generaliza-
tion requires no change in the proof.

(2) This continuity (or upper semi-continuity) with respect to (a, ) is
used only to show that the set 4; is closed. A slight change in the proof
shows that (d) may be replaced by

(d') if a is fixed and 0 <<a<<a, then [a, B]; is an upper semi-
continuous function of B in the range a < <a.
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Let us denote by &, the density of the integers which have a divisor

between ¢ and 2a. Besicovitchi has proved that liminfd,=0. I have
a—>a0

proved§ that lims, = 0. I now prove the following more general

TreoreM. Let e, be an arbitrary function of a such that lime, =0,
a—>w0

and let d, be the density of the integers having a divisor between a and a'*t<,
Then lim d, = 0.
a—>w
It can easily be proved that, if ¢, does not tend to 0, then limd, > 0.
We may suppose without loss of generality that a“— oo, for, if not, we
can find ¢,” such that ¢, <¢,’, ¢,/ >0, a*’— 0, and then the theorem for ¢,
follows from the theorem for ¢,’.
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We introduce the following notation:

1. 4,, 4,, ... denote the integers which are composed entirely of primes
not greater than a;

2. x=1log (1/e,)

3. By, B,, ... denote those integers in the interval (a!~¢*, g1*){ which
are composed entirely of primes greater than a‘;

4. B;*, B,*, ... denote those B’s which have not more than 2 different

prime factors;

5. B;*, By*, ... denote those B’s which have more than Zx but not
more than $x different prime factors;

. B, BY, ... denote those B’s which have exactly » different prime
factors where r < dx;

7. ¢’s denote suitable positive constants;
8. Pys Pas -.-, Ps denote the primes in the interval (ac, alt<);

9. 0, C,, ... denote the integers composed entirely of the primes
P1s Pas +05 Pss

10. N is a sufficiently large number.

We require six lemmas.

Lemma 1. The number of integers m <N which are divisible by an
A > a®a« 13 less than ¢, N |x.

Proof. Denote by A (m) the greatest A which divides m. We have (in
analogy with Legendre’s formula for n!)

II A(z)< I p¥/@-D—exp (N 5 logP) a1 Nea,

i= p<ata p<aa P

5, logp

p<y P—

since 1 <¢1logy.

Hence, if we denote by U the number of integers m << N for which

A(m) > a®a, we have
art Ne, =a Uze, -

and thus U <¢; N/e.

t We consider the upper bound to be included in the interval but not the lower bound.
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Levmma 2. The number of integers m <N divisible by a C > a'/* is

less than ¢y Ne,.
Proof. Denote by C'(m) the greatest C' which divides m

Legendre’s formula,

; we have, by

i, = lvw)<exp(c22\*'loga)=a"-‘”.

p<a+a P—1

N
IMCOG@)< I p¥P-l=exp (

i=1 p<altea
Hence, if we denote by V the number of integers m <N for which

f.'g.f." I‘ €Eq e
a > a / ?

and thus V<e,Ne
- J |
E - o 0
LeEMMmA 3. 2 B <€
. : T |
Proof. First we estimate ilz.l Y6k

then pi: > (B{")Y/r,

-P! .

If B)=pipg...pm
and

:pilp:‘} i p“v e (B(?’))(-" nfr < AL S u)(-"—l)}/ (1)

The sum of the reciprocals of the B{"’s of which the first »—1 prime

. . i X
52 ... ppr is evidently not greater than ‘—P“u__ St 5
¥—1 r

where pit<piF<... < piy

factors are pf!
" means that p?» runs through the interval

( al_“eulr a1+:n‘
_' ny :r—'l » 1l "3‘—1) d
Py o Bply Py Py

Now it is known that, for y >3

where X

1
2 — —loglog_/-l—c,,—!—O(lOgy).

VAT
Hence
E — = loglog (uv)—loglog u+0(—-—l-)
uSp<uy .’lju \10 (24

g
1 | 1 log v 1
= log (log u+log v)—loglog u—I—O(lOg u) < Iogu+0(log u)’

since log (1+2) <z for x > 0.
Hence, taking
al—*‘":ﬂ

oS | ny ap—1
Py Py - Py

and v= g1+,

U=
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we have
Tl e,(142) loga +0( 1 )
pxr " log (@t [pP ... P;) log (@< [p py? ... P}
and so, from (1),
_— e,(1+x) loga 1
}" ;Jr? =< ].Og a’].—‘:a x_{(l“!'éf:)(r—l)}/?'—l_() (

log al—eux—{(1+€ax?—1)}/?') ]
Now (11-2) e, loga tends to infinity because a‘ tends to infinity, and
s0 we may write

__2¢,(14a)loga
Z: 10(}' al € g &—{(1+e,Nr— —1)}/r
for a > a,, say. Thus
5 _l_< 2e,(1+x) 2re,(1-+x)
pr  l—eum—{(1+4€,)(r— DYr  1—e,(ratr—1)
Now 7 <4z, and so e (rz4r—1) <e32* <3 for sufficiently large a
Hence
! = de,r(x+1) < 8¢, 2.
Lt
From this, we have
2 10 e 1
5 s A

g r—1 '
M poe ar—1 < 8665 ? { ( 2 _171> /(?_1)1 }*
pit gy <atpes PT P2 Pra Xy j

g (x+ 1)y
= By
since
1
i I+ep “u
b logloga log log @ +O(10g afu)
—log (1+¢,)—log a+o(10gm,) <z+1.
Hence
P TR 7 B | (2] (x4 1)1 e 1)t3e]
Y= 3 Y =<8, X ——<1lfe, T
e Byt e BE T o L) (132!
since (z--1)1/(r—1)! increases with r for r <z+-1.
From the inequality n! > %

we have

18
=

(x_i_]_) ..C-{~16§£C-{—1
F < 66& 3’3 (bx)&lﬁ
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Now (x4-1)* < ex”,
and so
S 6e2 e, 23(x-+1) iz g3 Be? e, 23(x1-1) ei*(3)}
SE = VefEe, BT -d—rz.:eex';v? e:‘i-r:f_,ﬂul"_
S Bi‘r: » (-,a?c)-; a - 5
Furthert, (2)f < e,
i T
Hence P> < 6e? e, a3 (x1-1) e,
=1 "
but eﬁ. — e—-l‘?’
- 1 1 1
and so P> 5E < Be2a3(x+1) e,* < e,
=1+

for @ > a,, which proves Lemma 3.

= 3
LEMmA 4. 2 e < 2.
i—1 Bt
Proof. Asin Lemma 2, we have
) 1 r<iz o | r<ie ('L‘l‘ 1)r-1 ‘
Y o= X Y —==<8e.a%2 ¥ T — <8¢ x26% = Bea2 < a3,
i=1 Bt ssapi=1 B 7 yope (r—1)! 2

LemMmA 5. The number W of integers m << N which are divisible by not
more than 2x of the p;’s is less than Ne,».

Proof. We split these integers m into two classes. Put in the first
class those for which C(m) > a'/s. The number of these is, by Lemma 2,
less than ¢, Ne,.

For the integers of the second class C'(m) < al/.

The number Z of integers m << N for which C(m)= C; <a'/«is equal
to the number of integers less than or equal to N/C; not divisible by any
p;- For this number we have, from the sieve of Kratosthenes, the
inequality

z<% I (1—%€)+28<04

A

Ne,
g

since C; < a'/* and the number of the p,’s is independent of N. Hence

1

W <cy Ne,+cyNe, 2’ o
¢

Ci<a'fa

where the dash means that C; runs through the (s having not more than

+ We have GR=0EP@r<:i=270<e
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2 3 [32]
Y D
j?u.p p p,a_p H

!

1 ] P, a
W<(:2Nea—-[—c4Nsa<P,EuF+ 9 e 3] +...F [%x]‘

Zx prime factors. Thus

where p runs through p;, p,, ..., p,.
Finally, exactly as in the proof of Lemma 3,

[3z]
SV g SV
[3e]!

LemMA 6. The number of integers m << N divisible by %x or more of the
p;’s (multiple factors counted multiply) is less than nN fo:r every n >0, if
N> N(y).

The proof follows easily by Turan’s methodf, so that it will be
sufficient to sketch it.

The number of integers less than or equal to N divisible by a p;2 is less

than
“1.N 7}
2 —t =L N
Pspiz 2

. W<(:2Nea—|—c4Nea((x+l) . nr

hence it will be sufficient to consider the m’s containing the p,’s to the first

power only.
Let f(m) be the number of p,’s contained in m. We prove that

N
% [f(m)—=z]* <e; Na, (2)
m=1
where ¢; is independent of N and . Evidently
N N N
S [fm)—aP= X fm)?—2z £ f(m)+Na2. (3)
m=1 m=1 m=1

We can easily show that

X 2 o N LYy*® T
p‘iz:zi‘;, ‘ i
Further, z fm =2 —u] Nz+-O(N). (5)

Substituting from (4 ) a,nd (5) in (3), we immediately obtain (2).

From (2) we deduce that the number of integers less than or equal to NV
for which f(m)> %x is less than 9¢; N/xz < {n N for sufficiently large z;
thus Lemma 6 is proved.

Proof of the theorem. We divide the integers of the interval (@, alt<«)
into two classes. In the first class are the integers which are divisible by

t Journal London Math. Soc., 9 (1934), 274-276.

JOUR. 42. H



98 A GENERALIZATION OF A THEOREM OF BESICOVITCH.

an A > a*«, By Lemma 1 the number of integers m << N divisible by an
integer of the first class is less than ¢; N/x. The second class contains the
other integers in the interval in question. Every integer I of the second class
is divisible by a B;, for, if A4; is the largest 4 contained in 7, then /4,
contains no prime less than or equal to a‘, since these have been absorbed
by I,; also I/A; > a'~«%, since A;<<a*«; hence I/A;is a B. We divide
these B’s into three classes. Put in the first the B,*’s, in the second the
B;t’s, and in the third the B’s having more than tz prime factors.

The number of integers not greater than N divisible by a B* is less than

o0 N .
i§1 E—‘ <N
by Lemma 3.

We subdivide the integers less than or equal to &N divisible by a B;* into
two sets, putting in the first those of the form ¢B;+, where ¢t << N/B;* and
t has at most Zx different prime factors among the p;’s. The number of

integers in the first set is less than

N 3 1
e < a ea'.w,

BF

1,
a0
Ea

L8

i
by Lemma 4, since, by Lemma 5, the number of s is less than (N/B;*) €,*.
The second set includes the integers of the form ¢B;*, where ¢ has more than
2z different prime factors among the p,s. These integers have more than
ix prime factors (multiple factors counted multiply) among the p;’s, and
$0, by Lemma 6, their number is less than nN.

Similarly the number of integers m << N divisible by a B of the third
class is less than nN.

Hence the number of integers not greater than N having a divisor in
the interval (a,, a'*%) is less than

(& 1 L
N (—;El- _I_E“ﬂﬁ._}_xa Eu:10+7]) :
thus their density is less than
cl '1‘:3 3 ‘T‘(_l ”
?-{_e“' +23 e o4,

which is arbitrarily small. This proves the theorem.
By a more precise argument we can prove that the density in question
is less than €.
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